File size: 8,145 Bytes
a5f1617 410351d c346bf5 a5f1617 f19d5db a5f1617 3457223 a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 c346bf5 027e365 c346bf5 a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db a5f1617 f19d5db cbb9517 3457223 a3069a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from typing import List, Dict, Optional
from datetime import datetime, timedelta
from fastapi import FastAPI, HTTPException, Query, Body, Request
from pydantic import BaseModel, validator
import json
import os
app = FastAPI()
# Data storage (in-memory)
user_data: Dict[str, dict] = {} # Key: IP address, Value: User entry
# Data storage file
DATA_FILE = "user_data.json"
# --- Data Models ---
class UserEntry(BaseModel):
ip_address: str
device_type: str
timestamp: datetime
@validator("ip_address")
def validate_ip_address(cls, value):
parts = value.split('.')
if len(parts) != 4:
raise ValueError("Invalid IP address format")
for part in parts:
try:
num = int(part)
if not 0 <= num <= 255:
raise ValueError("Invalid IP address value")
except ValueError:
raise ValueError("Invalid IP address value")
return value
# --- Helper Functions ---
def load_data():
"""Loads data from the JSON file into the in-memory store."""
global user_data
if os.path.exists(DATA_FILE):
try:
with open(DATA_FILE, "r") as f:
data = json.load(f)
# Convert timestamp strings back to datetime objects
user_data = {
ip: {**entry, "timestamp": datetime.fromisoformat(entry["timestamp"])}
for ip, entry in data.items()
}
except Exception as e:
print(f"Error loading data from {DATA_FILE}: {e}")
# Handle the error gracefully, maybe start with an empty dataset
user_data = {}
def save_data():
"""Saves the in-memory data to the JSON file."""
try:
with open(DATA_FILE, "w") as f:
# Convert datetime objects to ISO format for JSON serialization
serializable_data = {
ip: {**entry, "timestamp": entry["timestamp"].isoformat()}
for ip, entry in user_data.items()
}
json.dump(serializable_data, f, indent=4)
except Exception as e:
print(f"Error saving data to {DATA_FILE}: {e}")
def clean_old_data():
"""Deletes data older than 7 days."""
global user_data
cutoff_time = datetime.now() - timedelta(days=7)
ips_to_delete = [ip for ip, entry in user_data.items() if entry["timestamp"] < cutoff_time]
for ip in ips_to_delete:
del user_data[ip]
if ips_to_delete:
save_data() # Save changes after deleting old data
# Load data on startup
load_data()
# --- API Endpoints ---
@app.post("/auto_entry/", response_model=UserEntry, status_code=201)
async def create_auto_user_entry(
request: Request,
device_type: str = Body(...),
timestamp: Optional[datetime] = Body(None)
):
"""
Endpoint to automatically record user entry by extracting the IP address
from the request and taking device_type and optional timestamp as input.
"""
try:
# Automatically extract the client's IP address
client_ip = request.client.host
if "x-forwarded-for" in request.headers:
client_ip = request.headers["x-forwarded-for"].split(",")[0]
# If timestamp is not provided, use the current time
if not timestamp:
timestamp = datetime.now()
# Create a UserEntry object
entry_data = UserEntry(
ip_address=ip_address,
device_type=device_type,
timestamp=timestamp
)
# Save the entry
user_data[ip_address] = entry_data.dict()
save_data()
return entry_data
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {e}")
@app.post("/entry/", response_model=UserEntry, status_code=201)
async def create_user_entry(entry_data: UserEntry):
"""Endpoint to record user entry."""
try:
entry_data.timestamp = datetime.now()
user_data[entry_data.ip_address] = entry_data.dict()
save_data()
return entry_data
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {e}")
@app.get("/analytics/")
async def get_user_analytics(period: str = Query(..., enum=["last_hour", "last_day", "last_7_day"])):
"""Endpoint to get user analytics."""
try:
clean_old_data() # Clean data before processing
now = datetime.now()
if period == "last_hour":
cutoff = now - timedelta(hours=1)
elif period == "last_day":
cutoff = now - timedelta(days=1)
elif period == "last_7_day":
cutoff = now - timedelta(days=7)
else:
raise HTTPException(status_code=400, detail="Invalid period specified")
filtered_data = [entry for entry in user_data.values() if entry["timestamp"] >= cutoff]
unique_users = len(set(entry["ip_address"] for entry in filtered_data))
device_counts: Dict[str, int] = {}
for entry in filtered_data:
device_counts[entry["device_type"]] = device_counts.get(entry["device_type"], 0) + 1
return {
"total_unique_users": unique_users,
"device_type_info": device_counts,
}
except HTTPException as he:
raise he
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating analytics: {e}")
@app.get("/export/", response_model=Dict[str, UserEntry])
async def export_user_data():
"""Endpoint to export all user data in JSON format."""
try:
clean_old_data() # Ensure no old data is exported
return user_data
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error exporting data: {e}")
@app.post("/import/")
async def import_user_data(data: Dict[str, dict] = Body(...)):
"""Endpoint to import user data from JSON."""
try:
imported_count = 0
for ip, entry_dict in data.items():
try:
# Validate the imported entry
entry = UserEntry(**entry_dict)
entry.timestamp = datetime.fromisoformat(entry_dict["timestamp"]) # Ensure timestamp is datetime
user_data[ip] = entry.dict()
imported_count += 1
except Exception as e:
print(f"Error importing entry for IP {ip}: {e}") # Log individual import errors
save_data()
return {"message": f"Successfully imported {imported_count} user entries."}
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid JSON format")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error importing data: {e}")
# --- Background Task (Optional, for regular cleanup) ---
async def scheduled_cleanup():
"""Periodically clean up old data."""
while True:
clean_old_data()
await asyncio.sleep(60 * 60) # Clean every hour
# Import asyncio if you use the background task
import asyncio
from fastapi import BackgroundTasks
@app.on_event("startup")
async def startup_event():
# You can uncomment this to run the background task
asyncio.create_task(scheduled_cleanup())
pass
# --- Error Handling (Advanced - using exception handlers) ---
from fastapi import Request
from fastapi.responses import JSONResponse
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
return JSONResponse(
status_code=exc.status_code,
content={"message": exc.detail},
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
return JSONResponse(
status_code=500,
content={"message": f"An unexpected error occurred: {exc}"},
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8083, debug=True) |