Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -107,13 +107,14 @@ if query and st.session_state.documents_loaded:
|
|
107 |
# Initialize Google Generative AI
|
108 |
llm = GoogleGenerativeAI(model='gemini-1.0-pro', google_api_key="AIzaSyC1AvHnvobbycU8XSCXh-gRq3DUfG0EP98")
|
109 |
|
110 |
-
|
|
|
111 |
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:", input_variables=["context", "question"])
|
112 |
|
113 |
# Create the retrieval QA chain
|
114 |
qa_chain = RetrievalQA.from_chain_type(
|
115 |
retriever=st.session_state.vector_store.as_retriever(),
|
116 |
-
chain_type="
|
117 |
llm=llm,
|
118 |
chain_type_kwargs={"prompt": qa_prompt}
|
119 |
)
|
|
|
107 |
# Initialize Google Generative AI
|
108 |
llm = GoogleGenerativeAI(model='gemini-1.0-pro', google_api_key="AIzaSyC1AvHnvobbycU8XSCXh-gRq3DUfG0EP98")
|
109 |
|
110 |
+
|
111 |
+
#Create a PromptTemplate for the QA chain
|
112 |
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:", input_variables=["context", "question"])
|
113 |
|
114 |
# Create the retrieval QA chain
|
115 |
qa_chain = RetrievalQA.from_chain_type(
|
116 |
retriever=st.session_state.vector_store.as_retriever(),
|
117 |
+
chain_type="stuff",
|
118 |
llm=llm,
|
119 |
chain_type_kwargs={"prompt": qa_prompt}
|
120 |
)
|