Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -85,17 +85,16 @@ if st.button('Crawl CUDA Documentation'):
|
|
| 85 |
with st.spinner('Crawling CUDA documentation...'):
|
| 86 |
crawled_data, crawled_urls = crawl("https://docs.nvidia.com/cuda/", max_depth=1, delay=0.1)
|
| 87 |
st.write(f"Processed {len(crawled_data)} pages.")
|
| 88 |
-
|
| 89 |
texts = []
|
| 90 |
for url, text in crawled_data:
|
| 91 |
chunks = chunk_text(text, max_chunk_size=1024)
|
| 92 |
texts.extend(chunks)
|
| 93 |
st.success("Crawling and processing completed.")
|
| 94 |
-
|
| 95 |
# Create embeddings
|
| 96 |
-
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 97 |
-
|
| 98 |
-
|
| 99 |
# Store embeddings in FAISS
|
| 100 |
st.session_state.vector_store = FAISS.from_texts(texts, embeddings)
|
| 101 |
st.session_state.documents_loaded = True
|
|
@@ -109,16 +108,13 @@ if query and st.session_state.documents_loaded:
|
|
| 109 |
llm = GoogleGenerativeAI(model='gemini-1.0-pro', google_api_key="AIzaSyC1AvHnvobbycU8XSCXh-gRq3DUfG0EP98")
|
| 110 |
|
| 111 |
# Create a PromptTemplate for the QA chain
|
| 112 |
-
qa_prompt = PromptTemplate(
|
| 113 |
-
template="Answer the following question based on the context provided:\n\n{context}\n\nQuestion: {question}\nAnswer:",
|
| 114 |
-
input_variables=["context", "question"])
|
| 115 |
|
| 116 |
# Create the retrieval QA chain
|
| 117 |
-
qa_chain = RetrievalQA
|
| 118 |
-
chain_type="map_rerank",
|
| 119 |
retriever=st.session_state.vector_store.as_retriever(),
|
| 120 |
-
|
| 121 |
-
|
| 122 |
)
|
| 123 |
|
| 124 |
response = qa_chain({"question": query})
|
|
|
|
| 85 |
with st.spinner('Crawling CUDA documentation...'):
|
| 86 |
crawled_data, crawled_urls = crawl("https://docs.nvidia.com/cuda/", max_depth=1, delay=0.1)
|
| 87 |
st.write(f"Processed {len(crawled_data)} pages.")
|
| 88 |
+
|
| 89 |
texts = []
|
| 90 |
for url, text in crawled_data:
|
| 91 |
chunks = chunk_text(text, max_chunk_size=1024)
|
| 92 |
texts.extend(chunks)
|
| 93 |
st.success("Crawling and processing completed.")
|
| 94 |
+
|
| 95 |
# Create embeddings
|
| 96 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'})
|
| 97 |
+
|
|
|
|
| 98 |
# Store embeddings in FAISS
|
| 99 |
st.session_state.vector_store = FAISS.from_texts(texts, embeddings)
|
| 100 |
st.session_state.documents_loaded = True
|
|
|
|
| 108 |
llm = GoogleGenerativeAI(model='gemini-1.0-pro', google_api_key="AIzaSyC1AvHnvobbycU8XSCXh-gRq3DUfG0EP98")
|
| 109 |
|
| 110 |
# Create a PromptTemplate for the QA chain
|
| 111 |
+
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\n{context}\n\nQuestion: {question}\nAnswer:", input_variables=["context", "question"])
|
|
|
|
|
|
|
| 112 |
|
| 113 |
# Create the retrieval QA chain
|
| 114 |
+
qa_chain = RetrievalQA(
|
|
|
|
| 115 |
retriever=st.session_state.vector_store.as_retriever(),
|
| 116 |
+
llm=llm,
|
| 117 |
+
prompt=qa_prompt
|
| 118 |
)
|
| 119 |
|
| 120 |
response = qa_chain({"question": query})
|