Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain_google_genai import GoogleGenerativeAI
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
-
from langchain.chains import load_qa_chain, RetrievalQA
|
9 |
import requests
|
10 |
from bs4 import BeautifulSoup
|
11 |
from urllib.parse import urljoin
|
@@ -110,12 +110,12 @@ if query and st.session_state.documents_loaded:
|
|
110 |
# Create a PromptTemplate for the QA chain
|
111 |
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\n{context}\n\nQuestion: {question}\nAnswer:", input_variables=["context", "question"])
|
112 |
|
113 |
-
#
|
114 |
-
qa_chain =
|
115 |
-
prompt=qa_prompt,
|
116 |
retriever=st.session_state.vector_store.as_retriever(),
|
|
|
117 |
llm=llm,
|
118 |
-
|
119 |
)
|
120 |
|
121 |
response = qa_chain({"question": query})
|
@@ -125,4 +125,3 @@ if query and st.session_state.documents_loaded:
|
|
125 |
st.write(response['source'])
|
126 |
elif query:
|
127 |
st.warning("Please crawl the CUDA documentation first.")
|
128 |
-
|
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain_google_genai import GoogleGenerativeAI
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
+
#from langchain.chains import load_qa_chain, RetrievalQA
|
9 |
import requests
|
10 |
from bs4 import BeautifulSoup
|
11 |
from urllib.parse import urljoin
|
|
|
110 |
# Create a PromptTemplate for the QA chain
|
111 |
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\n{context}\n\nQuestion: {question}\nAnswer:", input_variables=["context", "question"])
|
112 |
|
113 |
+
# Create the retrieval QA chain
|
114 |
+
qa_chain = RetrievalQA.from_chain_type(
|
|
|
115 |
retriever=st.session_state.vector_store.as_retriever(),
|
116 |
+
chain_type="map_reduce",
|
117 |
llm=llm,
|
118 |
+
prompt=qa_prompt
|
119 |
)
|
120 |
|
121 |
response = qa_chain({"question": query})
|
|
|
125 |
st.write(response['source'])
|
126 |
elif query:
|
127 |
st.warning("Please crawl the CUDA documentation first.")
|
|