from langchain.vectorstores import FAISS from langchain.llms import GooglePalm from langchain.document_loaders.csv_loader import CSVLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA import os from dotenv import load_dotenv load_dotenv() # take environment variables from .env (especially openai api key) # Create Google Palm LLM model llm = GooglePalm(google_api_key=os.environ["GOOGLE_API_KEY"], temperature=0.1) # # Initialize instructor embeddings using the Hugging Face model instructor_embeddings = HuggingFaceEmbeddings(model_name="hkunlp/instructor-large") vectordb_file_path = "faiss_index" def create_vector_db(): # Load data from FAQ sheet loader = CSVLoader(file_path='codebasics_faqs.csv', source_column="prompt") data = loader.load() # Create a FAISS instance for vector database from 'data' vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings) # Save vector database locally vectordb.save_local(vectordb_file_path) def get_qa_chain(): # Load the vector database from the local folder vectordb = FAISS.load_local(vectordb_file_path, instructor_embeddings) # Create a retriever for querying the vector database retriever = vectordb.as_retriever(score_threshold=0.7) prompt_template = """Given the following context and a question, generate an answer based on this context only. In the answer try to provide as much text as possible from "response" section in the source document context without making much changes. If the answer is not found in the context, kindly state "I don't know." Don't try to make up an answer. CONTEXT: {context} QUESTION: {question}""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, input_key="query", return_source_documents=True, chain_type_kwargs={"prompt": PROMPT}) return chain if __name__ == "__main__": create_vector_db() chain = get_qa_chain() print(chain("Do you have javascript course?"))