Spaces:
Sleeping
Sleeping
from langchain.vectorstores import FAISS | |
from langchain.llms import GooglePalm | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() # take environment variables from .env (especially openai api key) | |
# Create Google Palm LLM model | |
llm = GooglePalm(google_api_key=os.environ["GOOGLE_API_KEY"], temperature=0.1) | |
# # Initialize instructor embeddings using the Hugging Face model | |
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large") | |
vectordb_file_path = "faiss_index" | |
def create_vector_db(): | |
# Load data from FAQ sheet | |
loader = CSVLoader(file_path='codebasics_faqs.csv', source_column="prompt") | |
data = loader.load() | |
# Create a FAISS instance for vector database from 'data' | |
vectordb = FAISS.from_documents(documents=data, | |
embedding=instructor_embeddings) | |
# Save vector database locally | |
vectordb.save_local(vectordb_file_path) | |
def get_qa_chain(): | |
# Load the vector database from the local folder | |
vectordb = FAISS.load_local(vectordb_file_path, instructor_embeddings) | |
# Create a retriever for querying the vector database | |
retriever = vectordb.as_retriever(score_threshold=0.7) | |
prompt_template = """Given the following context and a question, generate an answer based on this context only. | |
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes. | |
If the answer is not found in the context, kindly state "I don't know." Don't try to make up an answer. | |
CONTEXT: {context} | |
QUESTION: {question}""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, input_variables=["context", "question"] | |
) | |
chain = RetrievalQA.from_chain_type(llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
input_key="query", | |
return_source_documents=True, | |
chain_type_kwargs={"prompt": PROMPT}) | |
return chain | |
if __name__ == "__main__": | |
create_vector_db() | |
chain = get_qa_chain() | |
print(chain("Do you have javascript course?")) |