# app.py import os import base64 import streamlit as st from PyPDF2 import PdfReader from dotenv import load_dotenv from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai # ========================== # Load Environment Variables # ========================== load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # ========================== # Helper Functions # ========================== # Extract text from PDFs def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: if page.extract_text(): text += page.extract_text() return text # Split text into chunks def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter( chunk_size=10000, chunk_overlap=1000 ) return text_splitter.split_text(text) # Create FAISS vector database def get_vector_store(text_chunks): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") # Create QA Chain def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context. If the answer is not in the provided context, just say "Answer is not available in the context". Do not provide incorrect answers. Context:\n{context}\n Question:\n{question}\n Answer: """ model = ChatGoogleGenerativeAI( model="models/gemini-2.0-flash", temperature=0.3 ) prompt = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain # Handle user question def user_input(user_question): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents": docs, "question": user_question}, return_only_outputs=True ) st.write("### Reply:") st.write(response["output_text"]) # ========================== # Streamlit UI # ========================== def main(): st.set_page_config(page_title="Chat with PDF 💁", layout="wide") st.header("📄 Chat with your PDF using Gemini + FAISS") # User question input user_question = st.text_input("Ask a question about the uploaded PDFs:") if user_question: user_input(user_question) # Sidebar for uploading PDFs with st.sidebar: st.title("📂 Menu") pdf_docs = st.file_uploader( "Upload PDF files and click on 'Submit & Process'", accept_multiple_files=True, type=["pdf"] ) if st.button("Submit & Process"): if pdf_docs: with st.spinner("Processing PDFs..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("✅ Processing complete! You can now ask questions.") else: st.warning("⚠️ Please upload at least one PDF file.") if __name__ == "__main__": main()