#imporitng libraryies import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv import base64 load_dotenv() #get api key os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) #pdf read and convert into raw text def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader= PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text #making chunks of text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks #create embeddings and store in vector database def get_vector_store(text_chunks): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") #define chain def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain #take user input def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) st.write("Reply: ", response["output_text"]) #steamlit interface def main(): # titleimg = "wp2856135.gif" # # impliment background formating # def set_bg_hack(main_bg): # # set bg name # main_bg_ext = "gif" # st.markdown( # f""" # # """, # unsafe_allow_html=True, # ) # set_bg_hack(titleimg) #st.set_page_config("Chat PDF") st.header("Chat with PDF 💁") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: user_input(user_question) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") if __name__ == "__main__": main()