Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
#imporitng libraryies
|
2 |
-
import streamlit as st
|
3 |
-
from PyPDF2 import PdfReader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
import os
|
6 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
7 |
-
import google.generativeai as genai
|
8 |
-
from langchain.vectorstores import FAISS
|
9 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
-
from langchain.chains.question_answering import load_qa_chain
|
11 |
-
from langchain.prompts import PromptTemplate
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
import base64
|
14 |
-
|
15 |
-
load_dotenv()
|
16 |
-
|
17 |
-
#get api key
|
18 |
-
os.getenv("GOOGLE_API_KEY")
|
19 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#pdf read and convert into raw text
|
26 |
-
def get_pdf_text(pdf_docs):
|
27 |
-
text=""
|
28 |
-
for pdf in pdf_docs:
|
29 |
-
pdf_reader= PdfReader(pdf)
|
30 |
-
for page in pdf_reader.pages:
|
31 |
-
text+= page.extract_text()
|
32 |
-
return text
|
33 |
-
|
34 |
-
|
35 |
-
#making chunks of text
|
36 |
-
def get_text_chunks(text):
|
37 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
38 |
-
chunks = text_splitter.split_text(text)
|
39 |
-
return chunks
|
40 |
-
|
41 |
-
#create embeddings and store in vector database
|
42 |
-
def get_vector_store(text_chunks):
|
43 |
-
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
44 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
45 |
-
vector_store.save_local("faiss_index")
|
46 |
-
|
47 |
-
#define chain
|
48 |
-
def get_conversational_chain():
|
49 |
-
|
50 |
-
prompt_template = """
|
51 |
-
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
52 |
-
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
53 |
-
Context:\n {context}?\n
|
54 |
-
Question: \n{question}\n
|
55 |
-
|
56 |
-
Answer:
|
57 |
-
"""
|
58 |
-
|
59 |
-
model = ChatGoogleGenerativeAI(model="gemini-pro",
|
60 |
-
temperature=0.3)
|
61 |
-
|
62 |
-
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
63 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
64 |
-
|
65 |
-
return chain
|
66 |
-
|
67 |
-
|
68 |
-
#take user input
|
69 |
-
def user_input(user_question):
|
70 |
-
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
71 |
-
|
72 |
-
new_db = FAISS.load_local("faiss_index", embeddings)
|
73 |
-
docs = new_db.similarity_search(user_question)
|
74 |
-
|
75 |
-
chain = get_conversational_chain()
|
76 |
-
|
77 |
-
|
78 |
-
response = chain(
|
79 |
-
{"input_documents":docs, "question": user_question}
|
80 |
-
, return_only_outputs=True)
|
81 |
-
|
82 |
-
print(response)
|
83 |
-
st.write("Reply: ", response["output_text"])
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
#steamlit interface
|
88 |
-
def main():
|
89 |
-
titleimg = "bg.jpeg"
|
90 |
-
|
91 |
-
# impliment background formating
|
92 |
-
def set_bg_hack(main_bg):
|
93 |
-
# set bg name
|
94 |
-
main_bg_ext = "jpeg"
|
95 |
-
st.markdown(
|
96 |
-
f"""
|
97 |
-
<style>
|
98 |
-
.stApp {{
|
99 |
-
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
100 |
-
background-repeat: no-repeat;
|
101 |
-
background-position: right 50% bottom 95% ;
|
102 |
-
background-size: cover;
|
103 |
-
background-attachment: scroll;
|
104 |
-
}}
|
105 |
-
</style>
|
106 |
-
""",
|
107 |
-
unsafe_allow_html=True,
|
108 |
-
)
|
109 |
-
|
110 |
-
set_bg_hack(titleimg)
|
111 |
-
|
112 |
-
st.set_page_config("Chat PDF")
|
113 |
-
st.header("Chat with PDF 💁")
|
114 |
-
|
115 |
-
user_question = st.text_input("Ask a Question from the PDF Files")
|
116 |
-
|
117 |
-
if user_question:
|
118 |
-
user_input(user_question)
|
119 |
-
|
120 |
-
with st.sidebar:
|
121 |
-
st.title("Menu:")
|
122 |
-
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
123 |
-
if st.button("Submit & Process"):
|
124 |
-
with st.spinner("Processing..."):
|
125 |
-
raw_text = get_pdf_text(pdf_docs)
|
126 |
-
text_chunks = get_text_chunks(raw_text)
|
127 |
-
get_vector_store(text_chunks)
|
128 |
-
st.success("Done")
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
if __name__ == "__main__":
|
133 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|