File size: 103,036 Bytes
dbfbc03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "-Jv7Y4hXwt0j"
   },
   "source": [
    "# Question duplicates\n",
    "\n",
    "We will explore Siamese networks applied to natural language processing. We will further explore the fundamentals of TensorFlow and we will be able to implement a more complicated structure using it. By completing this project, we will learn how to implement models with different architectures. \n",
    "\n",
    "\n",
    "## Outline\n",
    "\n",
    "- [Overview](#0)\n",
    "- [Part 1: Importing the Data](#1)\n",
    "    - [1.1 Loading in the data](#1.1)\n",
    "    - [1.2 Learn question encoding](#1.2)\n",
    "- [Part 2: Defining the Siamese model](#2)\n",
    "    - [2.1 Understanding the Siamese Network](#2.1)\n",
    "        - [Exercise 01](#ex01)\n",
    "    - [2.2 Hard  Negative Mining](#2.2)\n",
    "        - [Exercise 02](#ex02)\n",
    "- [Part 3: Training](#3)\n",
    "    - [3.1 Training the model](#3.1)\n",
    "        - [Exercise 03](#ex03)\n",
    "- [Part 4: Evaluation](#4)\n",
    "    - [4.1 Evaluating your siamese network](#4.1)\n",
    "    - [4.2 Classify](#4.2)\n",
    "        - [Exercise 04](#ex04)\n",
    "- [Part 5: Testing with your own questions](#5)\n",
    "    - [Exercise 05](#ex05)\n",
    "- [On Siamese networks](#6)\n",
    "\n",
    "<a name='0'></a>\n",
    "### Overview\n",
    "In particular, in this assignment you will: \n",
    "\n",
    "- Learn about Siamese networks\n",
    "- Understand how the triplet loss works\n",
    "- Understand how to evaluate accuracy\n",
    "- Use cosine similarity between the model's outputted vectors\n",
    "- Use the data generator to get batches of questions\n",
    "- Predict using your own model\n",
    "\n",
    "By now, you should be familiar with Tensorflow and know how to make use of it to define your model. We will start this homework by asking you to create a vocabulary in a similar way as you did in the previous assignments. After this, you will build a classifier that will allow you to identify whether two questions are the same or not. \n",
    "\n",
    "<img src = \"./img/meme.png\" style=\"width:550px;height:300px;\"/>\n",
    "\n",
    "\n",
    "Your model will take in the two questions, which will be transformed into tensors, each tensor will then go through embeddings, and after that an LSTM. Finally you will compare the outputs of the two subnetworks using cosine similarity. \n",
    "\n",
    "Before taking a deep dive into the model, you will start by importing the data set, and exploring it a bit.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "4sF9Hqzgwt0l"
   },
   "source": [
    "###### <a name='1'></a>\n",
    "# Part 1: Importing the Data\n",
    "<a name='1.1'></a>\n",
    "### 1.1 Loading in the data\n",
    "\n",
    "You will be using the 'Quora question answer' dataset to build a model that can identify similar questions. This is a useful task because you don't want to have several versions of the same question posted. Several times when teaching I end up responding to similar questions on piazza, or on other community forums. This data set has already been labeled for you. Run the cell below to import some of the packages you will be using. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "zdACgs491cs2",
    "outputId": "b31042ef-845b-46b8-c783-185e96b135f7"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import random as rnd\n",
    "import tensorflow as tf\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "outputs": [],
   "source": [
    "import w3_unittest"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "3GYhQRMspitx"
   },
   "source": [
    "You will now load the data set. We have done some preprocessing for you. If you have taken the deeplearning specialization, this is a slightly different training method than the one you have seen there. If you have not, then don't worry about it, we will explain everything. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 528
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "sXWBVGWnpity",
    "outputId": "afa90d4d-fed7-43b8-bcba-48c95d600ad5",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of question pairs:  404351\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>qid1</th>\n",
       "      <th>qid2</th>\n",
       "      <th>question1</th>\n",
       "      <th>question2</th>\n",
       "      <th>is_duplicate</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>What is the step by step guide to invest in sh...</td>\n",
       "      <td>What is the step by step guide to invest in sh...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>What is the story of Kohinoor (Koh-i-Noor) Dia...</td>\n",
       "      <td>What would happen if the Indian government sto...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>How can I increase the speed of my internet co...</td>\n",
       "      <td>How can Internet speed be increased by hacking...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "      <td>Why am I mentally very lonely? How can I solve...</td>\n",
       "      <td>Find the remainder when [math]23^{24}[/math] i...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>Which one dissolve in water quikly sugar, salt...</td>\n",
       "      <td>Which fish would survive in salt water?</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   id  qid1  qid2                                          question1  \\\n",
       "0   0     1     2  What is the step by step guide to invest in sh...   \n",
       "1   1     3     4  What is the story of Kohinoor (Koh-i-Noor) Dia...   \n",
       "2   2     5     6  How can I increase the speed of my internet co...   \n",
       "3   3     7     8  Why am I mentally very lonely? How can I solve...   \n",
       "4   4     9    10  Which one dissolve in water quikly sugar, salt...   \n",
       "\n",
       "                                           question2  is_duplicate  \n",
       "0  What is the step by step guide to invest in sh...             0  \n",
       "1  What would happen if the Indian government sto...             0  \n",
       "2  How can Internet speed be increased by hacking...             0  \n",
       "3  Find the remainder when [math]23^{24}[/math] i...             0  \n",
       "4            Which fish would survive in salt water?             0  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.read_csv(\"./data/questions.csv\")\n",
    "N = len(data)\n",
    "print('Number of question pairs: ', N)\n",
    "data.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "gkSQTu7Ypit0"
   },
   "source": [
    "First, you will need to split the data into a training and test set. The test set will be used later to evaluate your model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "z00A7vEMpit1",
    "outputId": "c12ae7e8-a959-4f56-aa29-6ad34abc1c81",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train set: 300000 Test set: 10240\n"
     ]
    }
   ],
   "source": [
    "N_train = 300000\n",
    "N_test = 10240\n",
    "data_train = data[:N_train]\n",
    "data_test = data[N_train:N_train + N_test]\n",
    "print(\"Train set:\", len(data_train), \"Test set:\", len(data_test))\n",
    "del (data)  # remove to free memory"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "FbqIRRyEpit4"
   },
   "source": [
    "As explained in the lectures, you will select only the question pairs that are duplicate to train the model. <br>\n",
    "You need to build two sets of questions as input for the Siamese network, assuming that question $q1_i$ (question $i$ in the first set) is a duplicate of $q2_i$ (question $i$ in the second set), but all other questions in the second set are not duplicates of $q1_i$.  \n",
    "The test set uses the original pairs of questions and the status describing if the questions are duplicates.\n",
    "\n",
    "The following cells are in charge of selecting only duplicate questions from the training set, which will give you a smaller dataset. First find the indexes with duplicate questions.\n",
    "\n",
    "You will start by identifying the indexes in the training set which correspond to duplicate questions. For this you will define a boolean variable `td_index`, which has value `True` if the index corresponds to duplicate questions and `False` otherwise."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 51
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "Xi_TwXxxpit4",
    "outputId": "f146046f-9c0d-4d8a-ecf8-8d6a4a5371f7",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of duplicate questions:  111486\n",
      "Indexes of first ten duplicate questions: [5, 7, 11, 12, 13, 15, 16, 18, 20, 29]\n"
     ]
    }
   ],
   "source": [
    "td_index = data_train['is_duplicate'] == 1\n",
    "td_index = [i for i, x in enumerate(td_index) if x]\n",
    "print('Number of duplicate questions: ', len(td_index))\n",
    "print('Indexes of first ten duplicate questions:', td_index[:10])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You will first need to split the data into a training and test set. The test set will be used later to evaluate your model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 68
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "3I9oXSsKpit7",
    "outputId": "6f6bd3a1-219f-4fb3-a524-450c38bf44ba",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?\n",
      "I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?\n",
      "is_duplicate:  1\n"
     ]
    }
   ],
   "source": [
    "print(data_train['question1'][5])\n",
    "print(data_train['question2'][5])\n",
    "print('is_duplicate: ', data_train['is_duplicate'][5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, keep only the rows in the original training set that correspond to the rows where `td_index` is `True`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "XHpZO58Dss_v",
    "tags": []
   },
   "outputs": [],
   "source": [
    "Q1_train = np.array(data_train['question1'][td_index])\n",
    "Q2_train = np.array(data_train['question2'][td_index])\n",
    "\n",
    "Q1_test = np.array(data_test['question1'])\n",
    "Q2_test = np.array(data_test['question2'])\n",
    "y_test  = np.array(data_test['is_duplicate'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "P5vBkxunpiuB"
   },
   "source": [
    "<br>Let's print to see what your data looks like."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 170
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "joyrS1XEpLWn",
    "outputId": "3257cde7-3164-40d9-910e-fa91eae917a0",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TRAINING QUESTIONS:\n",
      "\n",
      "Question 1:  Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?\n",
      "Question 2:  I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me? \n",
      "\n",
      "Question 1:  What would a Trump presidency mean for current international master’s students on an F1 visa?\n",
      "Question 2:  How will a Trump presidency affect the students presently in US or planning to study in US? \n",
      "\n",
      "TESTING QUESTIONS:\n",
      "\n",
      "Question 1:  How do I prepare for interviews for cse?\n",
      "Question 2:  What is the best way to prepare for cse? \n",
      "\n",
      "is_duplicate = 0 \n",
      "\n"
     ]
    }
   ],
   "source": [
    "print('TRAINING QUESTIONS:\\n')\n",
    "print('Question 1: ', Q1_train[0])\n",
    "print('Question 2: ', Q2_train[0], '\\n')\n",
    "print('Question 1: ', Q1_train[5])\n",
    "print('Question 2: ', Q2_train[5], '\\n')\n",
    "\n",
    "print('TESTING QUESTIONS:\\n')\n",
    "print('Question 1: ', Q1_test[0])\n",
    "print('Question 2: ', Q2_test[0], '\\n')\n",
    "print('is_duplicate =', y_test[0], '\\n')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "SuggGPaQpiuY"
   },
   "source": [
    "Finally, split your training set into training/validation sets so that you can use them at training time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of duplicate questions:  111486\n",
      "The length of the training set is:   89188\n",
      "The length of the validation set is:  22298\n"
     ]
    }
   ],
   "source": [
    "# Splitting the data\n",
    "cut_off = int(len(Q1_train) * 0.8)\n",
    "train_Q1, train_Q2 = Q1_train[:cut_off], Q2_train[:cut_off]\n",
    "val_Q1, val_Q2 = Q1_train[cut_off:], Q2_train[cut_off:]\n",
    "print('Number of duplicate questions: ', len(Q1_train))\n",
    "print(\"The length of the training set is:  \", len(train_Q1))\n",
    "print(\"The length of the validation set is: \", len(val_Q1))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "BDcxEmX31y3d"
   },
   "source": [
    "<a name='1.2'></a>\n",
    "### 1.2 Learning question encoding\n",
    "\n",
    "The next step is to learn how to encode each of the questions as a list of numbers (integers). You will be learning how to encode each word of the selected duplicate pairs with an index. \n",
    "\n",
    "You will start by learning a word dictionary, or vocabulary, containing all the words in your training dataset, which you will use to encode each word of the selected duplicate pairs with an index. \n",
    "\n",
    "For this task you will be using the [`TextVectorization`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/TextVectorization) layer from Keras. which will take care of everything for you. Begin by setting a seed, so we all get the same encoding.\n",
    "\n",
    "The vocabulary is learned using the `.adapt()`. This will analyze the dataset, determine the frequency of individual string values, and create a vocabulary from them. If you need, you can later access the vocabulary by using `.get_vocabulary()`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [],
   "source": [
    "tf.random.set_seed(0)\n",
    "text_vectorization = tf.keras.layers.TextVectorization(output_mode='int',split='whitespace', standardize='strip_punctuation')\n",
    "text_vectorization.adapt(np.concatenate((Q1_train,Q2_train)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you can see, it is set to split text on whitespaces and it's stripping the punctuation from text. You can check how big your vocabulary is."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Vocabulary size: 36224\n"
     ]
    }
   ],
   "source": [
    "print(f'Vocabulary size: {text_vectorization.vocabulary_size()}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also call `text_vectorization` to see what the encoding looks like for the first questions of the training and test datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "first question in the train set:\n",
      "\n",
      "Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me? \n",
      "\n",
      "encoded version:\n",
      "tf.Tensor(\n",
      "[ 6984     6   178    10  8988  2442 35393   761    13  6636 28205    31\n",
      "    28   483    45    98], shape=(16,), dtype=int64) \n",
      "\n",
      "first question in the test set:\n",
      "\n",
      "How do I prepare for interviews for cse? \n",
      "\n",
      "encoded version:\n",
      "tf.Tensor([    4     8     6   160    17  2079    17 11775], shape=(8,), dtype=int64)\n"
     ]
    }
   ],
   "source": [
    "print('first question in the train set:\\n')\n",
    "print(Q1_train[0], '\\n') \n",
    "print('encoded version:')\n",
    "print(text_vectorization(Q1_train[0]),'\\n')\n",
    "\n",
    "print('first question in the test set:\\n')\n",
    "print(Q1_test[0], '\\n')\n",
    "print('encoded version:')\n",
    "print(text_vectorization(Q1_test[0]) )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Expected output:\n",
    "```\n",
    "first question in the train set:\n",
    "\n",
    "Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me? \n",
    "\n",
    "encoded version:\n",
    "tf.Tensor(\n",
    "[ 6984     6   178    10  8988  2442 35393   761    13  6636 28205    31\n",
    "    28   483    45    98], shape=(16,), dtype=int64) \n",
    "\n",
    "first question in the test set:\n",
    "\n",
    "How do I prepare for interviews for cse? \n",
    "\n",
    "encoded version:\n",
    "tf.Tensor([    4     8     6   160    17  2079    17 11775], shape=(8,), dtype=int64)\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "KmZRBoaMwt0w"
   },
   "source": [
    "<a name='2'></a>\n",
    "# Part 2: Defining the Siamese model\n",
    "\n",
    "<a name='2.1'></a>\n",
    "\n",
    "### 2.1 Understanding the Siamese Network \n",
    "A Siamese network is a neural network which uses the same weights while working in tandem on two different input vectors to compute comparable output vectors. The Siamese network you are about to implement looks something like this:\n",
    "\n",
    "<img src = \"./img/Siamese.png\" style=\"width:790px;height:300px;\"/>\n",
    "\n",
    "You get the question, get it vectorized and embedded, run it through an LSTM layer, normalize $v_1$ and $v_2$, and finally get the corresponding cosine similarity for each pair of questions (remember that each question is a single string). Because of the implementation of the loss function you will see in the next section, you are not going to have the cosine similarity as output of your Siamese network, but rather $v_1$ and $v_2$. You will add the cosine distance step once you reach the classification step. \n",
    "\n",
    "To train the model, you will use the triplet loss (explained below). This loss makes use of a baseline (anchor) input that is compared to a positive (truthy) input and a negative (falsy) input. The (cosine) distance from the baseline input to the positive input is minimized, and the distance from the baseline input to the negative  input is maximized. Mathematically, you are trying to maximize the following.\n",
    "\n",
    "$$\\mathcal{L}(A, P, N)=\\max \\left(\\|\\mathrm{f}(A)-\\mathrm{f}(P)\\|^{2}-\\|\\mathrm{f}(A)-\\mathrm{f}(N)\\|^{2}+\\alpha, 0\\right),$$\n",
    "\n",
    "where $A$ is the anchor input, for example $q1_1$, $P$ is the duplicate input, for example, $q2_1$, and $N$ is the negative input (the non duplicate question), for example $q2_2$.<br>\n",
    "$\\alpha$ is a margin; you can think about it as a safety net, or by how much you want to push the duplicates from the non duplicates. This is the essence of the triplet loss. However, as you will see in the next section, you will be using a pretty smart trick to improve your training, known as hard negative mining. \n",
    "<br>\n",
    "\n",
    "<a name='ex02'></a>\n",
    "### Exercise 01\n",
    "\n",
    "**Instructions:** Implement the `Siamese` function below. You should be using all the functions explained below. \n",
    "\n",
    "To implement this model, you will be using `TensorFlow`. Concretely, you will be using the following functions.\n",
    "\n",
    "\n",
    "- [`tf.keras.models.Sequential`](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential): groups a linear stack of layers into a tf.keras.Model.\n",
    "    - You can pass in the layers as arguments to `Serial`, separated by commas, or simply instantiate the `Sequential`model and use the `add` method to add layers.\n",
    "    - For example: `Sequential(Embeddings(...), AveragePooling1D(...), Dense(...), Softmax(...))` or \n",
    "    \n",
    "    `model = Sequential()\n",
    "     model.add(Embeddings(...))\n",
    "     model.add(AveragePooling1D(...))\n",
    "     model.add(Dense(...))\n",
    "     model.add(Softmax(...))`\n",
    "\n",
    "-  [`tf.keras.layers.Embedding`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding) : Maps positive integers into vectors of fixed size. It will have shape (vocabulary length X dimension of output vectors). The dimension of output vectors (called `d_feature`in the model) is the number of elements in the word embedding. \n",
    "    - `Embedding(input_dim, output_dim)`.\n",
    "    - `input_dim` is the number of unique words in the given vocabulary.\n",
    "    - `output_dim` is the number of elements in the word embedding (some choices for a word embedding size range from 150 to 300, for example).\n",
    "    \n",
    "\n",
    "\n",
    "-  [`tf.keras.layers.LSTM`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM) : The LSTM layer. The number of units should be specified and should match the number of elements in the word embedding. \n",
    "    - `LSTM(units)` Builds an LSTM layer of n_units.\n",
    "    \n",
    "    \n",
    "    \n",
    "- [`tf.keras.layers.GlobalAveragePooling1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D) : Computes global average pooling, which essentially takes the mean across a desired axis. GlobalAveragePooling1D uses one tensor axis to form groups of values and replaces each group with the mean value of that group. \n",
    "    - `GlobalAveragePooling1D()` takes the mean.\n",
    "\n",
    "\n",
    "\n",
    "- [`tf.keras.layers.Lambda`](https://trax-ml.readthedocs.io/en/latest/trax.layers.html#trax.layers.base.Fn): Layer with no weights that applies the function f, which should be specified using a lambda syntax. You will use this layer to apply normalization with the function\n",
    "    - `tfmath.l2_normalize(x)`\n",
    "\n",
    "\n",
    "\n",
    "- [`tf.keras.layers.Input`](https://www.tensorflow.org/api_docs/python/tf/keras/Input): it is used to instantiate a Keras tensor. Remember to set correctly the dimension and type of the input, which are batches of questions. For this, keep in mind that each question is a single string. \n",
    "    - `Input(input_shape,dtype=None,...)`\n",
    "    - `input_shape`: Shape tuple (not including the batch axis)\n",
    "    - `dtype`: (optional) data type of the input\n",
    "\n",
    "\n",
    "\n",
    "- [`tf.keras.layers.Concatenate`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate): Layer that concatenates a list of inputs. This layer will concatenate the normalized outputs of each LSTM into a single output for the model. \n",
    "    - `Concatenate()`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "deletable": false,
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "# GRADED FUNCTION: Siamese\n",
    "def Siamese(text_vectorizer, vocab_size=36224, d_feature=128):\n",
    "    \"\"\"Returns a Siamese model.\n",
    "\n",
    "    Args:\n",
    "        text_vectorizer (TextVectorization): TextVectorization instance, already adapted to your training data.\n",
    "        vocab_size (int, optional): Length of the vocabulary. Defaults to 36224, which is the vocabulary size for your case.\n",
    "        d_model (int, optional): Depth of the model. Defaults to 128.\n",
    "        \n",
    "    Returns:\n",
    "        tf.model.Model: A Siamese model. \n",
    "    \n",
    "    \"\"\"\n",
    "    ### START CODE HERE ###\n",
    "\n",
    "    branch = tf.keras.models.Sequential(name='sequential') \n",
    "    # Add the text_vectorizer layer. This is the text_vectorizer you instantiated and trained before \n",
    "    branch.add(text_vectorizer)\n",
    "    # Add the Embedding layer. Remember to call it 'embedding' using the parameter `name`\n",
    "    branch.add(tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=d_feature, name='embedding'))\n",
    "    # Add the LSTM layer, recall from W2 that you want to the LSTM layer to return sequences, ot just one value. \n",
    "    # Remember to call it 'LSTM' using the parameter `name`\n",
    "    branch.add(tf.keras.layers.LSTM(units=d_feature, return_sequences=True, name='LSTM'))\n",
    "    # Add the GlobalAveragePooling1D layer. Remember to call it 'mean' using the parameter `name`\n",
    "    branch.add(tf.keras.layers.GlobalAveragePooling1D(name='mean'))\n",
    "    \n",
    "    # Add the normalization layer using Lambda\n",
    "    branch.add(tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1), name='out'))\n",
    "    \n",
    "    # Define both inputs. Remember to call then 'input_1' and 'input_2' using the `name` parameter. \n",
    "    # Be mindful of the data type and size\n",
    "    input1 = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='input_1')\n",
    "    input2 = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='input_2')\n",
    "    # Define the output of each branch of your Siamese network. Remember that both branches have the same coefficients, \n",
    "    # but they each receive different inputs.\n",
    "    branch1 = branch(input1)\n",
    "    branch2 = branch(input2)\n",
    "    # Define the Concatenate layer. You should concatenate columns, you can fix this using the `axis`parameter. \n",
    "    # This layer is applied over the outputs of each branch of the Siamese network\n",
    "    conc = tf.keras.layers.Concatenate(axis=-1, name='conc_1_2')([branch1, branch2])\n",
    "    \n",
    "    ### END CODE HERE ###\n",
    "    \n",
    "    return tf.keras.models.Model(inputs=[input1, input2], outputs=conc, name=\"SiameseModel\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "es2gfwZypiul"
   },
   "source": [
    "Setup the Siamese network model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 255
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "kvQ_jf52-JAn",
    "outputId": "d409460d-2ffb-4ae6-8745-ddcfa1d892ad",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From c:\\Users\\Pankaj rawat\\IdeaProjects\\Avoiding-duplicate-question-in-Quora\\seasme\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\core.py:204: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"SiameseModel\"</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1mModel: \"SiameseModel\"\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
       "┃<span style=\"font-weight: bold\"> Layer (type)        </span>┃<span style=\"font-weight: bold\"> Output Shape      </span>┃<span style=\"font-weight: bold\">    Param # </span>┃<span style=\"font-weight: bold\"> Connected to      </span>┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
       "│ input_1             │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>)         │          <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │ -                 │\n",
       "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">InputLayer</span>)        │                   │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ input_2             │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>)         │          <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │ -                 │\n",
       "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">InputLayer</span>)        │                   │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ sequential          │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>)       │  <span style=\"color: #00af00; text-decoration-color: #00af00\">4,768,256</span> │ input_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>],    │\n",
       "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Sequential</span>)        │                   │            │ input_2[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>]     │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conc_1_2            │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">256</span>)       │          <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │ sequential[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>], │\n",
       "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Concatenate</span>)       │                   │            │ sequential[<span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>]  │\n",
       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
       "</pre>\n"
      ],
      "text/plain": [
       "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
       "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)       \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape     \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m   Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to     \u001b[0m\u001b[1m \u001b[0m┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
       "│ input_1             │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m)         │          \u001b[38;5;34m0\u001b[0m │ -                 │\n",
       "│ (\u001b[38;5;33mInputLayer\u001b[0m)        │                   │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ input_2             │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m)         │          \u001b[38;5;34m0\u001b[0m │ -                 │\n",
       "│ (\u001b[38;5;33mInputLayer\u001b[0m)        │                   │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ sequential          │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m)       │  \u001b[38;5;34m4,768,256\u001b[0m │ input_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m],    │\n",
       "│ (\u001b[38;5;33mSequential\u001b[0m)        │                   │            │ input_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m]     │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conc_1_2            │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m)       │          \u001b[38;5;34m0\u001b[0m │ sequential[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], │\n",
       "│ (\u001b[38;5;33mConcatenate\u001b[0m)       │                   │            │ sequential[\u001b[38;5;34m1\u001b[0m][\u001b[38;5;34m0\u001b[0m]  │\n",
       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">4,768,256</span> (18.19 MB)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m4,768,256\u001b[0m (18.19 MB)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">4,768,256</span> (18.19 MB)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m4,768,256\u001b[0m (18.19 MB)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential\"</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1mModel: \"sequential\"\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃<span style=\"font-weight: bold\"> Layer (type)                    </span>┃<span style=\"font-weight: bold\"> Output Shape           </span>┃<span style=\"font-weight: bold\">       Param # </span>┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ text_vectorization              │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>)           │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
       "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">TextVectorization</span>)             │                        │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ embedding (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Embedding</span>)           │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>)      │     <span style=\"color: #00af00; text-decoration-color: #00af00\">4,636,672</span> │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ LSTM (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>)                     │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>)      │       <span style=\"color: #00af00; text-decoration-color: #00af00\">131,584</span> │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ mean (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">GlobalAveragePooling1D</span>)   │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>)            │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ out (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Lambda</span>)                    │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>)            │             <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "</pre>\n"
      ],
      "text/plain": [
       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃\u001b[1m \u001b[0m\u001b[1mLayer (type)                   \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape          \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m      Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ text_vectorization              │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m)           │             \u001b[38;5;34m0\u001b[0m │\n",
       "│ (\u001b[38;5;33mTextVectorization\u001b[0m)             │                        │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ embedding (\u001b[38;5;33mEmbedding\u001b[0m)           │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m)      │     \u001b[38;5;34m4,636,672\u001b[0m │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ LSTM (\u001b[38;5;33mLSTM\u001b[0m)                     │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m)      │       \u001b[38;5;34m131,584\u001b[0m │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ mean (\u001b[38;5;33mGlobalAveragePooling1D\u001b[0m)   │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m)            │             \u001b[38;5;34m0\u001b[0m │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ out (\u001b[38;5;33mLambda\u001b[0m)                    │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m)            │             \u001b[38;5;34m0\u001b[0m │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">4,768,256</span> (18.19 MB)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m4,768,256\u001b[0m (18.19 MB)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">4,768,256</span> (18.19 MB)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m4,768,256\u001b[0m (18.19 MB)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# check your model\n",
    "model = Siamese(text_vectorization, vocab_size=text_vectorization.vocabulary_size())\n",
    "model.build(input_shape=None)\n",
    "model.summary()\n",
    "model.get_layer(name='sequential').summary()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "LMK9zqhHpiuo"
   },
   "source": [
    "**Expected output:**  \n",
    "\n",
    "<font size=2>\n",
    "\n",
    "```Model: \"SiameseModel\"\n",
    "__________________________________________________________________________________________________\n",
    " Layer (type)                Output Shape                 Param #   Connected to                  \n",
    "==================================================================================================\n",
    " input_1 (InputLayer)        [(None, 1)]                  0         []                            \n",
    "                                                                                                  \n",
    " input_2 (InputLayer)        [(None, 1)]                  0         []                            \n",
    "                                                                                                  \n",
    " sequential (Sequential)     (None, 128)                  4768256   ['input_1[0][0]',             \n",
    "                                                                     'input_2[0][0]']             \n",
    "                                                                                                  \n",
    " conc_1_2 (Concatenate)      (None, 256)                  0         ['sequential[0][0]',          \n",
    "                                                                     'sequential[1][0]']          \n",
    "                                                                                                  \n",
    "==================================================================================================\n",
    "Total params: 4768256 (18.19 MB)\n",
    "Trainable params: 4768256 (18.19 MB)\n",
    "Non-trainable params: 0 (0.00 Byte)\n",
    "__________________________________________________________________________________________________\n",
    "Model: \"sequential\"\n",
    "_________________________________________________________________\n",
    " Layer (type)                Output Shape              Param #   \n",
    "=================================================================\n",
    " text_vectorization (TextVe  (None, None)              0         \n",
    " ctorization)                                                    \n",
    "                                                                 \n",
    " embedding (Embedding)       (None, None, 128)         4636672   \n",
    "                                                                 \n",
    " LSTM (LSTM)                 (None, None, 128)         131584    \n",
    "                                                                 \n",
    " mean (GlobalAveragePooling  (None, 128)               0         \n",
    " 1D)                                                             \n",
    "                                                                 \n",
    " out (Lambda)                (None, 128)               0         \n",
    "                                                                 \n",
    "=================================================================\n",
    "Total params: 4768256 (18.19 MB)\n",
    "Trainable params: 4768256 (18.19 MB)\n",
    "Non-trainable params: 0 (0.00 Byte)\n",
    "_________________________________________________________________\n",
    "```\n",
    "</font>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also draw the model for a clearer view of your Siamese network"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "You must install pydot (`pip install pydot`) for `plot_model` to work.\n"
     ]
    }
   ],
   "source": [
    "tf.keras.utils.plot_model(\n",
    "    model,\n",
    "    to_file=\"model.png\",\n",
    "    show_shapes=True,\n",
    "    show_dtype=True,\n",
    "    show_layer_names=True,\n",
    "    rankdir=\"TB\",\n",
    "    expand_nested=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "KVo1Gvripiuo"
   },
   "source": [
    "<a name='2.2'></a>\n",
    "\n",
    "### 2.2 Hard Negative Mining\n",
    "\n",
    "\n",
    "You will now implement the `TripletLoss` with hard negative mining.<br>\n",
    "As explained in the lecture, you will be using all the questions from each batch to compute this loss. Positive examples are questions $q1_i$, and $q2_i$, while all the other combinations $q1_i$, $q2_j$ ($i\\neq j$), are considered negative examples. The loss will be composed of two terms. One term utilizes the mean of all the non duplicates, the second utilizes the *closest negative*. Our loss expression is then:\n",
    " \n",
    "\\begin{align}\n",
    " \\mathcal{Loss_1(A,P,N)} &=\\max \\left( -cos(A,P)  + mean_{neg} +\\alpha, 0\\right) \\\\\n",
    " \\mathcal{Loss_2(A,P,N)} &=\\max \\left( -cos(A,P)  + closest_{neg} +\\alpha, 0\\right) \\\\\n",
    "\\mathcal{Loss(A,P,N)} &= mean(Loss_1 + Loss_2) \\\\\n",
    "\\end{align}\n",
    "\n",
    "\n",
    "Further, two sets of instructions are provided. The first set, found just below, provides a brief description of the task. If that set proves insufficient, a more detailed set can be displayed.  \n",
    "\n",
    "<a name='ex03'></a>\n",
    "### Exercise 02\n",
    "\n",
    "**Instructions (Brief):** Here is a list of things you should do: <br>\n",
    "\n",
    "- As this will be run inside Tensorflow, use all operation supplied by `tf.math` or `tf.linalg`, instead of `numpy` functions. You will also need to explicitly use `tf.shape` to get the batch size from the inputs. This is to make it compatible with the Tensor inputs it will receive when doing actual training and testing. \n",
    "- Use [`tf.linalg.matmul`](https://www.tensorflow.org/api_docs/python/tf/linalg/matmul) to calculate the similarity matrix $v_2v_1^T$ of dimension `batch_size` x `batch_size`. \n",
    "- Take the score of the duplicates on the diagonal with [`tf.linalg.diag_part`](https://www.tensorflow.org/api_docs/python/tf/linalg/diag_part). \n",
    "- Use the `TensorFlow` functions [`tf.eye`](https://www.tensorflow.org/api_docs/python/tf/eye) and [`tf.math.reduce_max`](https://www.tensorflow.org/api_docs/python/tf/math/reduce_max) for the identity matrix and the maximum respectively. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "GWsX-Wz3piup"
   },
   "source": [
    "<details>    \n",
    "<summary>\n",
    "    <font size=\"3\" color=\"darkgreen\"><b>More Detailed Instructions </b></font>\n",
    "</summary>\n",
    "\n",
    "We'll describe the algorithm using a detailed example. Below, $V_1$, $V_2$ are the output of the normalization blocks in our model. Here you will use a `batch_size` of 4 and a `d_model of 3`. As explained in lecture, the input questions, Q1, Q2 are arranged so that corresponding inputs are duplicates while non-corresponding entries are not. The outputs will have the same pattern.\n",
    "\n",
    "<img src = \"./img/tripletLossexample.png\" style=\"width:817px;\"/>\n",
    "\n",
    "This testcase arranges the outputs, $V_1$,$V_2$, to highlight different scenarios. Here, the first two outputs $V_1[0]$, $V_2[0]$ match exactly, so the model is generating the same vector for Q1[0] and Q2[0] inputs. The second pair of outputs, circled in orange, differ greatly on one of the values, so the transformation is not quite the same for these questions. Next, you have examples $V_1[3]$ and $V_2[3]$, which match almost exactly. Finally, $V_1[4]$ and $V_2[4]$, circled in purple, are set to be exactly opposite, being 180 degrees from each other. \n",
    "\n",
    "The first step is to compute the cosine similarity matrix or `score` in the code. As explained in the lectures, this is $$V_2 V_1^T.$$This is generated with `tf.linalg.matmul`. Since matrix multiplication is not commutative, the order in which you pass the arguments is important. If you want columns to represent different questions in Q1 and rows to represent different questions in Q2, as seen in the video, then you need to compute $V_2 V_1^T$. \n",
    "\n",
    "<img src = \"./img/tripletLoss2.png\" style=\"width:900px;\"/>\n",
    "\n",
    "The clever arrangement of inputs creates the data needed for positive *and* negative examples without having to run all pair-wise combinations. Because Q1[n] is a duplicate of only Q2[n], other combinations are explicitly created negative examples or *Hard Negative* examples. The matrix multiplication efficiently produces the cosine similarity of all positive/negative combinations as shown above on the left side of the diagram. 'Positive' are the results of duplicate examples (cells shaded in green) and 'negative' are the results of explicitly created negative examples (cells shaded in blue). The results for our test case are as expected, $V_1[0]\\cdot V_2[0]$ and $V_1[3]\\cdot V_2[3]$ match producing '1', and '0.99' respectively, while the other 'positive' cases don't match quite right. Note also that the $V_2[2]$ example was set to match $V_1[3]$, producing a not so good match at `score[2,2]` and an undesired 'negative' case of a '1', shown in grey. \n",
    "\n",
    "With the similarity matrix (`score`) you can begin to implement the loss equations. First, you can extract $cos(A,P)$ by utilizing `tf.linalg.diag_part`. The goal is to grab all the green entries in the diagram above. This is `positive` in the code.\n",
    "\n",
    "Next, you will create the *closest_negative*. This is the nonduplicate entry in $V_2$ that is closest to (has largest cosine similarity) to an entry in $V_1$, but still has smaller cosine similarity than the positive example. For example, consider row 2 in the score matrix. This row has the cosine similarity between $V_2[2]$ and all four vectors in $V_1$. In this case, the largest value in the off-diagonal is`score[2,3]`$=V_2[3]\\cdot V1[2]$, which has a score of 1. However, since 1 is grater than the similarity for the positive example, this is *not* the *closest_negative*. For this particular row, the *closes_negative* will have to be `score[2,1]=0.36`. This is the maximum value of the 'negative' entries, which are smaller than the 'positive' example.\n",
    "\n",
    "To implement this, you need to pick the maximum entry on a row of `score`, ignoring the 'positive'/green entries, and 'negative/blue entry greater that the 'positive' one. To avoid selecting these entries, you can make them larger negative numbers. For this, you can create a mask to identify these two scenarios, multiply it by 2.0 and subtract it out of `scores`. To create the mask, you need to check if the cell is diagonal by computing `tf.eye(batch_size) ==1`, or if the non-diagonal cell is greater than the diagonal with `(negative_zero_on_duplicate > tf.expand_dims(positive, 1)`. Remember that `positive` already has the diagonal values. Now you can use `tf.math.reduce_max`, row by row (axis=1), to select the maximum which is `closest_negative`.\n",
    "\n",
    "Next, we'll create *mean_negative*. As the name suggests, this is the mean of all the 'negative'/blue values in `score` on a row by row basis. You can use `tf.linalg.diag` to create a diagonal matrix, where the diagonal matches `positive`, and just subtract it from `score` to get just the 'negative' values. This is `negative_zero_on_duplicate` in the code. Compute the mean by using `tf.math.reduce_sum` on `negative_zero_on_duplicate` for `axis=1` and divide it by `(batch_size - 1)`. This is `mean_negative`.\n",
    "\n",
    "Now, you can compute loss using the two equations above and `tf.maximum`. This will form `triplet_loss1` and `triplet_loss2`. \n",
    "\n",
    "`triplet_loss` is the `tf.math.reduce_sum` of the sum of the two individual losses.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "deletable": false,
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "\n",
    "def TripletLossFn(v1, v2, margin=0.25):\n",
    "    \"\"\"Custom Loss function.\n",
    "\n",
    "    Args:\n",
    "    v1 (numpy.ndarray or Tensor): Array with dimension (batch_size, model_dimension) associated to Q1.\n",
    "    v2 (numpy.ndarray or Tensor): Array with dimension (batch_size, model_dimension) associated to Q2.\n",
    "    margin (float, optional): Desired margin. Defaults to 0.25.\n",
    "\n",
    "    Returns:\n",
    "        triplet_loss (numpy.ndarray or Tensor)\n",
    "    \"\"\"\n",
    "\n",
    "    ### START CODE HERE ###\n",
    "\n",
    "    # use `tf.linalg.matmul` to take the dot product of the two batches. \n",
    "    # Don't forget to transpose the second argument using `transpose_b=True`\n",
    "    scores = tf.linalg.matmul(v1, v2, transpose_b=True)\n",
    "    # calculate new batch size and cast it as the same datatype as scores.\n",
    "    batch_size = tf.cast(tf.shape(v1)[0], scores.dtype) \n",
    "    \n",
    "    # use `tf.linalg.diag_part` to grab the cosine similarity of all positive examples\n",
    "    positive = tf.linalg.diag_part(scores)\n",
    "    \n",
    "    # subtract the diagonal from scores. You can do this by creating a diagonal matrix with the values \n",
    "    # of all positive examples using `tf.linalg.diag`\n",
    "    negative_zero_on_duplicate = scores - tf.linalg.diag(positive)\n",
    "    \n",
    "    # use `tf.math.reduce_sum` on `negative_zero_on_duplicate` for `axis=1` and divide it by `(batch_size - 1)`\n",
    "    mean_negative = tf.math.reduce_sum(negative_zero_on_duplicate, axis=1) / (batch_size - 1)\n",
    "    \n",
    "    # create a composition of two masks: \n",
    "    # the first mask to extract the diagonal elements (make sure you use the variable batch_size here), \n",
    "    # the second mask to extract elements in the negative_zero_on_duplicate matrix that are larger than the elements in the diagonal \n",
    "    mask_exclude_positives = tf.cast((tf.eye(batch_size) == 1)|(negative_zero_on_duplicate > tf.reshape(positive, (batch_size, 1))),\n",
    "                                    scores.dtype)\n",
    "                                        \n",
    "    # multiply `mask_exclude_positives` with 2.0 and subtract it out of `negative_zero_on_duplicate`\n",
    "    negative_without_positive = negative_zero_on_duplicate - (mask_exclude_positives*2.0)\n",
    "                                     \n",
    "    # take the row by row `max` of `negative_without_positive`. \n",
    "    # Hint: `tf.math.reduce_max(negative_without_positive, axis = None)`\n",
    "    closest_negative = tf.math.reduce_max(negative_without_positive, axis = 0)\n",
    "                                     \n",
    "    # compute `tf.maximum` among 0.0 and `A`\n",
    "    # A = subtract `positive` from `margin` and add `closest_negative` \n",
    "    triplet_loss1 = tf.maximum(0.0, margin - positive + closest_negative)\n",
    "    \n",
    "    # compute `tf.maximum` among 0.0 and `B`\n",
    "    # B = subtract `positive` from `margin` and add `mean_negative` \n",
    "    triplet_loss2 = tf.maximum(0.0, margin - positive + mean_negative)\n",
    "                                     \n",
    "    # add the two losses together and take the `tf.math.reduce_sum` of it\n",
    "    triplet_loss = tf.math.reduce_sum(triplet_loss1+triplet_loss2)\n",
    "\n",
    "    ### END CODE HERE ###\n",
    "\n",
    "    return triplet_loss\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now you can check the triplet loss between two sets. The following example emulates the triplet loss between two groups of questions with `batch_size=2`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Triplet Loss: 2.499999993789265\n"
     ]
    }
   ],
   "source": [
    "v1 = np.array([[0.26726124, 0.53452248, 0.80178373],[0.5178918 , 0.57543534, 0.63297887]])\n",
    "v2 = np.array([[ 0.26726124,  0.53452248,  0.80178373],[-0.5178918 , -0.57543534, -0.63297887]])\n",
    "print(\"Triplet Loss:\", TripletLossFn(v1,v2).numpy())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Expected Output:**\n",
    "```CPP\n",
    "Triplet Loss: ~ 0.70\n",
    "```   "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "r974ozuHYAom"
   },
   "source": [
    "To recognize it as a loss function, keras needs it to have two inputs: true labels, and output labels. You will not be using the true labels, but you still need to pass some dummy variable with size `(batch_size,)` for TensorFlow to accept it as a valid loss.\n",
    "\n",
    "Additionally, the `out` parameter must coincide with the output of your Siamese network, which is the concatenation of the processing of each of the inputs, so you need to extract $v_1$ and $v_2$ from there."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "def TripletLoss(labels, out, margin=0.25):\n",
    "    _, out_size = out.shape # get embedding size\n",
    "    v1 = out[:,:int(out_size/2)] # Extract v1 from out\n",
    "    v2 = out[:,int(out_size/2):] # Extract v2 from out\n",
    "    return TripletLossFn(v1, v2, margin=margin)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "lsvjaCQ6wt02"
   },
   "source": [
    "<a name='3'></a>\n",
    "\n",
    "# Part 3: Training\n",
    "\n",
    "Now it's time to finally train your model. As usual, you have to define the cost function and the optimizer. You also have to build the actual model you will be training. \n",
    "\n",
    "To pass the input questions for training and validation you will use the iterator produced by [`tensorflow.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). Run the next cell to create your train and validation datasets. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [],
   "source": [
    "train_dataset = tf.data.Dataset.from_tensor_slices(((train_Q1, train_Q2),tf.constant([1]*len(train_Q1))))\n",
    "val_dataset = tf.data.Dataset.from_tensor_slices(((val_Q1, val_Q2),tf.constant([1]*len(val_Q1))))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "IgFMfH5awt07"
   },
   "source": [
    "<a name='3.1'></a>\n",
    "\n",
    "### 3.1 Training the model\n",
    "\n",
    "You will now write a function that takes in your model to train it. To train your model you have to decide how many times you want to iterate over the entire data set; each iteration is defined as an `epoch`. For each epoch, you have to go over all the data, using your `Dataset` iterator.\n",
    "\n",
    "<a name='ex04'></a>\n",
    "### Exercise 03\n",
    "\n",
    "**Instructions:** Implement the `train_model` below to train the neural network above. Here is a list of things you should do: \n",
    "\n",
    "- Compile the model. Here you will need to pass in:\n",
    "    - `loss=TripletLoss`\n",
    "    - `optimizer=Adam()` with learning rate `lr`\n",
    "- Call the `fit` method. You should pass:\n",
    "    - `train_dataset`\n",
    "    - `epochs`\n",
    "    - `validation_data` \n",
    "\n",
    "\n",
    "\n",
    "You will be using your triplet loss function with Adam optimizer. Also, note that you are not explicitly defining the batch size, because it will be already determined by the `Dataset`.\n",
    "\n",
    "This function will return the trained model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 391
    },
    "colab_type": "code",
    "deletable": false,
    "id": "-3KXjmBo_6Xa",
    "outputId": "9d57f731-1534-4218-e744-783359d5cd19",
    "scrolled": true,
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "# GRADED FUNCTION: train_model\n",
    "def train_model(Siamese, TripletLoss, text_vectorizer, train_dataset, val_dataset, d_feature=128, lr=0.01, train_steps=5):\n",
    "    \"\"\"Training the Siamese Model\n",
    "\n",
    "    Args:\n",
    "        Siamese (function): Function that returns the Siamese model.\n",
    "        TripletLoss (function): Function that defines the TripletLoss loss function.\n",
    "        text_vectorizer: trained instance of `TextVecotrization` \n",
    "        train_dataset (tf.data.Dataset): Training dataset\n",
    "        val_dataset (tf.data.Dataset): Validation dataset\n",
    "        d_feature (int, optional) = size of the encoding. Defaults to 128.\n",
    "        lr (float, optional): learning rate for optimizer. Defaults to 0.01\n",
    "        train_steps (int): number of epochs\n",
    "        \n",
    "    Returns:\n",
    "        tf.keras.Model\n",
    "    \"\"\"\n",
    "    ## START CODE HERE ###\n",
    "\n",
    "    # Instantiate your Siamese model\n",
    "    model = Siamese(text_vectorizer,\n",
    "                    vocab_size = text_vectorizer.vocabulary_size(), #set vocab_size accordingly to the size of your vocabulary\n",
    "                    d_feature = d_feature)\n",
    "    # Compile the model\n",
    "    model.compile(loss=TripletLoss,\n",
    "                  optimizer = tf.optimizers.Adam(learning_rate=lr)\n",
    "            )\n",
    "    # Train the model \n",
    "    model.fit(train_dataset,\n",
    "              epochs = train_steps,\n",
    "              validation_data = val_dataset,\n",
    "             )\n",
    "             \n",
    "    ### END CODE HERE ###\n",
    "\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now call the `train_model` function. You will be using a batch size of 256. \n",
    "\n",
    "To create the data generators you will be using the method `batch` for `Dataset` object. You will also call the `shuffle` method, to shuffle the dataset on each iteration."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "deletable": false,
    "editable": false,
    "scrolled": false,
    "tags": []
   },
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'train_dataset' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[2], line 3\u001b[0m\n\u001b[0;32m      1\u001b[0m train_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[0;32m      2\u001b[0m batch_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m256\u001b[39m\n\u001b[1;32m----> 3\u001b[0m train_generator \u001b[38;5;241m=\u001b[39m \u001b[43mtrain_dataset\u001b[49m\u001b[38;5;241m.\u001b[39mshuffle(\u001b[38;5;28mlen\u001b[39m(train_Q1),\n\u001b[0;32m      4\u001b[0m                                         seed\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m7\u001b[39m, \n\u001b[0;32m      5\u001b[0m                                         reshuffle_each_iteration\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\u001b[38;5;241m.\u001b[39mbatch(batch_size\u001b[38;5;241m=\u001b[39mbatch_size)\n\u001b[0;32m      6\u001b[0m val_generator \u001b[38;5;241m=\u001b[39m val_dataset\u001b[38;5;241m.\u001b[39mshuffle(\u001b[38;5;28mlen\u001b[39m(val_Q1), \n\u001b[0;32m      7\u001b[0m                                    seed\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m7\u001b[39m,\n\u001b[0;32m      8\u001b[0m                                    reshuffle_each_iteration\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\u001b[38;5;241m.\u001b[39mbatch(batch_size\u001b[38;5;241m=\u001b[39mbatch_size)\n\u001b[0;32m      9\u001b[0m model \u001b[38;5;241m=\u001b[39m train_model(Siamese, TripletLoss,text_vectorization, \n\u001b[0;32m     10\u001b[0m                                             train_generator, \n\u001b[0;32m     11\u001b[0m                                             val_generator, \n\u001b[0;32m     12\u001b[0m                                             train_steps\u001b[38;5;241m=\u001b[39mtrain_steps,)\n",
      "\u001b[1;31mNameError\u001b[0m: name 'train_dataset' is not defined"
     ]
    }
   ],
   "source": [
    "train_steps = 2\n",
    "batch_size = 256\n",
    "train_generator = train_dataset.shuffle(len(train_Q1),\n",
    "                                        seed=7, \n",
    "                                        reshuffle_each_iteration=True).batch(batch_size=batch_size)\n",
    "val_generator = val_dataset.shuffle(len(val_Q1), \n",
    "                                   seed=7,\n",
    "                                   reshuffle_each_iteration=True).batch(batch_size=batch_size)\n",
    "model = train_model(Siamese, TripletLoss,text_vectorization, \n",
    "                                            train_generator, \n",
    "                                            val_generator, \n",
    "                                            train_steps=train_steps,)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The model was only trained for 2 steps because training the whole Siamese network takes too long, and produces slightly different results for each run. For the rest of the assignment you will be using a pretrained model, but this small example should help you understand how the training can be done."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "abKPe7d4wt1C"
   },
   "source": [
    "<a name='4'></a>\n",
    "\n",
    "# Part 4:  Evaluation  \n",
    "\n",
    "<a name='4.1'></a>\n",
    "\n",
    "### 4.1 Evaluating your siamese network\n",
    "\n",
    "In this section you will learn how to evaluate a Siamese network. You will start by loading a pretrained model, and then you will use it to predict. For the prediction you will need to take the output of your model and compute the cosine loss between each pair of questions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "deletable": false,
    "editable": false,
    "scrolled": false,
    "tags": []
   },
   "outputs": [
    {
     "ename": "RecursionError",
     "evalue": "maximum recursion depth exceeded in comparison",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mRecursionError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[3], line 2\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mtf\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkeras\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodels\u001b[49m\u001b[38;5;241m.\u001b[39mload_model(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel/trained_model.keras\u001b[39m\u001b[38;5;124m'\u001b[39m, safe_mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;28mcompile\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m      4\u001b[0m \u001b[38;5;66;03m# Show the model architecture\u001b[39;00m\n\u001b[0;32m      5\u001b[0m model\u001b[38;5;241m.\u001b[39msummary()\n",
      "File \u001b[1;32mc:\\Users\\Pankaj rawat\\IdeaProjects\\Avoiding-duplicate-question-in-Quora\\seasme\\Lib\\site-packages\\tensorflow\\python\\util\\lazy_loader.py:182\u001b[0m, in \u001b[0;36mKerasLazyLoader.__getattr__\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m    180\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_initialized:\n\u001b[0;32m    181\u001b[0m   \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_initialize()\n\u001b[1;32m--> 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_tfll_keras_version\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mkeras_3\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m    183\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[0;32m    184\u001b[0m       \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    185\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_submodule\n\u001b[0;32m    186\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompat.v1.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    187\u001b[0m   ):\n\u001b[0;32m    188\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m    189\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` is not available with Keras 3. Keras 3 has \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    190\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno support for TF 1 APIs. You can install the `tf_keras` package \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    193\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` to `tf_keras`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    194\u001b[0m     )\n",
      "File \u001b[1;32mc:\\Users\\Pankaj rawat\\IdeaProjects\\Avoiding-duplicate-question-in-Quora\\seasme\\Lib\\site-packages\\tensorflow\\python\\util\\lazy_loader.py:182\u001b[0m, in \u001b[0;36mKerasLazyLoader.__getattr__\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m    180\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_initialized:\n\u001b[0;32m    181\u001b[0m   \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_initialize()\n\u001b[1;32m--> 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_tfll_keras_version\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mkeras_3\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m    183\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[0;32m    184\u001b[0m       \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    185\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_submodule\n\u001b[0;32m    186\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompat.v1.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    187\u001b[0m   ):\n\u001b[0;32m    188\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m    189\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` is not available with Keras 3. Keras 3 has \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    190\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno support for TF 1 APIs. You can install the `tf_keras` package \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    193\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` to `tf_keras`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    194\u001b[0m     )\n",
      "    \u001b[1;31m[... skipping similar frames: KerasLazyLoader.__getattr__ at line 182 (1488 times)]\u001b[0m\n",
      "File \u001b[1;32mc:\\Users\\Pankaj rawat\\IdeaProjects\\Avoiding-duplicate-question-in-Quora\\seasme\\Lib\\site-packages\\tensorflow\\python\\util\\lazy_loader.py:182\u001b[0m, in \u001b[0;36mKerasLazyLoader.__getattr__\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m    180\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_initialized:\n\u001b[0;32m    181\u001b[0m   \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_initialize()\n\u001b[1;32m--> 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_tfll_keras_version\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mkeras_3\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m    183\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[0;32m    184\u001b[0m       \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv1\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    185\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_submodule\n\u001b[0;32m    186\u001b[0m       \u001b[38;5;129;01mand\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompat.v1.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    187\u001b[0m   ):\n\u001b[0;32m    188\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m    189\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` is not available with Keras 3. Keras 3 has \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    190\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno support for TF 1 APIs. You can install the `tf_keras` package \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    193\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.compat.v1.keras` to `tf_keras`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    194\u001b[0m     )\n",
      "File \u001b[1;32mc:\\Users\\Pankaj rawat\\IdeaProjects\\Avoiding-duplicate-question-in-Quora\\seasme\\Lib\\site-packages\\tensorflow\\python\\util\\lazy_loader.py:178\u001b[0m, in \u001b[0;36mKerasLazyLoader.__getattr__\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m    177\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__getattr__\u001b[39m(\u001b[38;5;28mself\u001b[39m, item):\n\u001b[1;32m--> 178\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m_tfll_mode\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m_tfll_initialized\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m_tfll_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m:\n\u001b[0;32m    179\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m(types\u001b[38;5;241m.\u001b[39mModuleType, \u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(item)\n\u001b[0;32m    180\u001b[0m   \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tfll_initialized:\n",
      "\u001b[1;31mRecursionError\u001b[0m: maximum recursion depth exceeded in comparison"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "model = tf.keras.models.load_model('model/trained_model.keras', safe_mode=False, compile=False)\n",
    "\n",
    "# Show the model architecture\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "QDi4MBiKpivF"
   },
   "source": [
    "<a name='4.2'></a>\n",
    "### 4.2 Classify\n",
    "To determine the accuracy of the model, you will use the test set that was configured earlier. While in training you used only positive examples, the test data, `Q1_test`, `Q2_test` and `y_test`, is set up as pairs of questions, some of which are duplicates and some are not. \n",
    "This routine will run all the test question pairs through the model, compute the cosine similarity of each pair, threshold it and compare the result to `y_test` - the correct response from the data set. The results are accumulated to produce an accuracy; the confusion matrix is also computed to have a better understanding of the errors.\n",
    "\n",
    "\n",
    "<a name='ex05'></a>\n",
    "### Exercise 04\n",
    "\n",
    "**Instructions**  \n",
    " - Use a `tensorflow.data.Dataset` to go through the data in chunks with size batch_size. This time you don't need the labels, so you can just replace them by `None`,\n",
    " - use `predict` on the chunks of data.\n",
    " - compute `v1`, `v2` using the model output,\n",
    " - for each element of the batch\n",
    "        - compute the cosine similarity of each pair of entries, `v1[j]`,`v2[j]`\n",
    "        - determine if `d > threshold`\n",
    "        - increment accuracy if that result matches the expected results (`y_test[j]`)\n",
    "  \n",
    "   Instead of running a for loop, you will vectorize all these operations to make things more efficient,\n",
    " - compute the final accuracy and confusion matrix and return. For the confusion matrix you can use the [`tf.math.confusion_matrix`](https://www.tensorflow.org/api_docs/python/tf/math/confusion_matrix) function. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "deletable": false,
    "id": "K-h6ZH507fUm",
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "# GRADED FUNCTION: classify\n",
    "def classify(test_Q1, test_Q2, y_test, threshold, model, batch_size=64, verbose=True):\n",
    "    \"\"\"Function to test the accuracy of the model.\n",
    "\n",
    "    Args:\n",
    "        test_Q1 (numpy.ndarray): Array of Q1 questions. Each element of the array would be a string.\n",
    "        test_Q2 (numpy.ndarray): Array of Q2 questions. Each element of the array would be a string.\n",
    "        y_test (numpy.ndarray): Array of actual target.\n",
    "        threshold (float): Desired threshold\n",
    "        model (tensorflow.Keras.Model): The Siamese model.\n",
    "        batch_size (int, optional): Size of the batches. Defaults to 64.\n",
    "\n",
    "    Returns:\n",
    "        float: Accuracy of the model\n",
    "        numpy.array: confusion matrix\n",
    "    \"\"\"\n",
    "    y_pred = []\n",
    "    test_gen = tf.data.Dataset.from_tensor_slices(((test_Q1, test_Q2),None)).batch(batch_size=batch_size)\n",
    "    \n",
    "    ### START CODE HERE ###\n",
    "    \n",
    "    for (batch_x1, batch_x2), _ in test_gen:\n",
    "        # Get the outputs of the two branches of the Siamese network\n",
    "        v1 = model.get_layer('sequential')(batch_x1)\n",
    "        v2 = model.get_layer('sequential')(batch_x2)\n",
    "        \n",
    "        # Compute the cosine similarity\n",
    "        d = tf.reduce_sum(v1 * v2, axis=1)\n",
    "        \n",
    "        # Make predictions based on the threshold\n",
    "        batch_y_pred = tf.cast(d > threshold, tf.float64)\n",
    "        y_pred.extend(batch_y_pred.numpy())\n",
    "    \n",
    "    # Calculate the accuracy\n",
    "    y_pred = tf.convert_to_tensor(y_pred, dtype=tf.float64)\n",
    "    accuracy = tf.reduce_mean(tf.cast(tf.equal(y_pred, y_test), tf.float64))\n",
    "    \n",
    "    # Compute the confusion matrix\n",
    "    cm = tf.math.confusion_matrix(y_test, y_pred, num_classes=2)\n",
    "    \n",
    "#     pred = None\n",
    "#     _, n_feat = None\n",
    "#     v1 = model(q1)\n",
    "#     v2 = None\n",
    "    \n",
    "#     # Compute the cosine similarity. Using `tf.math.reduce_sum`. \n",
    "#     # Don't forget to use the appropriate axis argument.\n",
    "#     d  = None\n",
    "#     # Check if d>threshold to make predictions\n",
    "#     y_pred = tf.cast(d>threshold, tf.float64)\n",
    "#     # take the average of correct predictions to get the accuracy\n",
    "#     accuracy = None\n",
    "#     # compute the confusion matrix using `tf.math.confusion_matrix`\n",
    "#     cm = tf.math.confusion_matrix\n",
    "    \n",
    "    ### END CODE HERE ###\n",
    "    \n",
    "    return accuracy, cm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "yeQjHxkfpivH",
    "outputId": "103b8449-896f-403d-f011-583df70afdae",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy 0.7259765625\n",
      "Confusion matrix:\n",
      "[[4876 1506]\n",
      " [1300 2558]]\n"
     ]
    }
   ],
   "source": [
    "# this takes around 1 minute\n",
    "accuracy, cm = classify(Q1_test,Q2_test, y_test, 0.7, model,  batch_size = 512) \n",
    "print(\"Accuracy\", accuracy.numpy())\n",
    "print(f\"Confusion matrix:\\n{cm.numpy()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "CsokYZwhpivJ"
   },
   "source": [
    "### **Expected Result**  \n",
    "Accuracy ~0.725\n",
    "\n",
    "Confusion matrix:\n",
    "```\n",
    "[[4876 1506]\n",
    " [1300 2558]]\n",
    " ```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[92mAll tests passed!\n"
     ]
    }
   ],
   "source": [
    "# Test your function!\n",
    "w3_unittest.test_classify(classify, model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "4-STC44Ywt1I"
   },
   "source": [
    "<a name='5'></a>\n",
    "\n",
    "# Part 5: Testing with your own questions\n",
    "\n",
    "In this final section you will test the model with your own questions. You will write a function `predict` which takes two questions as input and returns `True` or `False` depending on whether the question pair is a duplicate or not.   "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "21h3Y0FNpivK"
   },
   "source": [
    "Write a function `predict` that takes in two questions, the threshold and the model, and returns whether the questions are duplicates (`True`) or not duplicates (`False`) given a similarity threshold. \n",
    "\n",
    "<a name='ex06'></a>\n",
    "### Exercise 05\n",
    "\n",
    "\n",
    "**Instructions:** \n",
    "- Create a tensorflow.data.Dataset from your two questions. Again, labels are not important, so you simply write `None`\n",
    "- use the trained model output to create `v1`, `v2`\n",
    "- compute the cosine similarity (dot product) of `v1`, `v2`\n",
    "- compute `res` by comparing d to the threshold\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "deletable": false,
    "id": "kg0wQ8qhpivL",
    "tags": [
     "graded"
    ]
   },
   "outputs": [],
   "source": [
    "# GRADED FUNCTION: predict\n",
    "def predict(question1, question2, threshold, model, verbose=False):\n",
    "    \"\"\"Function for predicting if two questions are duplicates.\n",
    "\n",
    "    Args:\n",
    "        question1 (str): First question.\n",
    "        question2 (str): Second question.\n",
    "        threshold (float): Desired threshold.\n",
    "        model (tensorflow.keras.Model): The Siamese model.\n",
    "        verbose (bool, optional): If the results should be printed out. Defaults to False.\n",
    "\n",
    "    Returns:\n",
    "        bool: True if the questions are duplicates, False otherwise.\n",
    "    \"\"\"\n",
    "    generator = tf.data.Dataset.from_tensor_slices((([question1], [question2]),None)).batch(batch_size=1)\n",
    "    \n",
    "    ### START CODE HERE ###\n",
    "    \n",
    "    # Call the predict method of your model and save the output into v1v2\n",
    "    v1v2 = model.predict(generator)\n",
    "    out_size = v1v2.shape[1]\n",
    "    # Extract v1 and v2 from the model output\n",
    "    v1 = v1v2[:,:int(out_size/2)]\n",
    "    v2 = v1v2[:,int(out_size/2):]\n",
    "    print(v1.shape)\n",
    "    # Take the dot product to compute cos similarity of each pair of entries, v1, v2\n",
    "    # Since v1 and v2 are both vectors, use the function tf.math.reduce_sum instead of tf.linalg.matmul\n",
    "    d = tf.reduce_sum(v1 * v2)\n",
    "    # Is d greater than the threshold?\n",
    "    res = d > threshold\n",
    "\n",
    "    ### END CODE HERE ###\n",
    "    \n",
    "    if(verbose):\n",
    "        print(\"Q1  = \", question1, \"\\nQ2  = \", question2)\n",
    "        print(\"d   = \", d.numpy())\n",
    "        print(\"res = \", res.numpy())\n",
    "\n",
    "    return res.numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 102
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "Raojyhw3z7HE",
    "outputId": "b0907aaf-63c0-448d-99b0-012359381a97",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 16ms/step\n",
      "(1, 128)\n",
      "Q1  =  When will I see you? \n",
      "Q2  =  When can I see you again?\n",
      "d   =  0.8422112\n",
      "res =  True\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Feel free to try with your own questions\n",
    "question1 = \"When will I see you?\"\n",
    "question2 = \"When can I see you again?\"\n",
    "# 1 means it is duplicated, 0 otherwise\n",
    "predict(question1 , question2, 0.7, model, verbose = True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "7OEKCa_hpivP"
   },
   "source": [
    "##### Expected Output\n",
    "If input is:\n",
    "```\n",
    "question1 = \"When will I see you?\"\n",
    "question2 = \"When can I see you again?\"\n",
    "```\n",
    "\n",
    "Output is (d may vary a bit):\n",
    "```\n",
    "1/1 [==============================] - 0s 13ms/step\n",
    "Q1  =  When will I see you? \n",
    "Q2  =  When can I see you again?\n",
    "d   =  0.8422112\n",
    "res =  True\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 102
    },
    "colab_type": "code",
    "deletable": false,
    "editable": false,
    "id": "DZccIQ_lpivQ",
    "outputId": "3ed0af7e-5d44-4eb3-cebe-d6f74abe3e41",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 24ms/step\n",
      "(1, 128)\n",
      "Q1  =  Do they enjoy eating the dessert? \n",
      "Q2  =  Do they like hiking in the desert?\n",
      "d   =  0.12625802\n",
      "res =  False\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 79,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Feel free to try with your own questions\n",
    "question1 = \"Do they enjoy eating the dessert?\"\n",
    "question2 = \"Do they like hiking in the desert?\"\n",
    "# 1 means it is duplicated, 0 otherwise\n",
    "predict(question1 , question2, 0.7, model, verbose=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "lWrt-yCMpivS"
   },
   "source": [
    "##### Expected output\n",
    "\n",
    "If input is:\n",
    "```\n",
    "question1 = \"Do they enjoy eating the dessert?\"\n",
    "question2 = \"Do they like hiking in the desert?\"\n",
    "```\n",
    "\n",
    "Output (d may vary a bit):\n",
    "\n",
    "```\n",
    "1/1 [==============================] - 0s 12ms/step\n",
    "Q1  =  Do they enjoy eating the dessert? \n",
    "Q2  =  Do they like hiking in the desert?\n",
    "d   =  0.12625802\n",
    "res =  False\n",
    "\n",
    "False\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "NAfV3l5Zwt1L"
   },
   "source": [
    "You can see that the Siamese network is capable of catching complicated structures. Concretely it can identify question duplicates although the questions do not have many words in common. \n",
    " "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {
    "deletable": false,
    "editable": false,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 1s 556ms/step\n",
      "(1, 128)\n",
      "1/1 [==============================] - 0s 16ms/step\n",
      "(1, 128)\n",
      "1/1 [==============================] - 0s 23ms/step\n",
      "(1, 128)\n",
      "1/1 [==============================] - 0s 16ms/step\n",
      "(1, 128)\n",
      "1/1 [==============================] - 0s 16ms/step\n",
      "(1, 128)\n",
      "\u001b[92mAll tests passed!\n"
     ]
    }
   ],
   "source": [
    "# Test your function!\n",
    "w3_unittest.test_predict(predict, model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "FsE8tdTLwt1M"
   },
   "source": [
    "<a name='6'></a>\n",
    "\n",
    "### On Siamese networks\n",
    "\n",
    "Siamese networks are important and useful. Many times there are several questions that are already asked in quora, or other platforms and you can use Siamese networks to avoid question duplicates. \n",
    "\n",
    "Congratulations, you have now built a powerful system that can recognize question duplicates. In the next course we will use transformers for machine translation, summarization, question answering, and chatbots. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# "
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "machine_shape": "hm",
   "name": "C3_W4_Assignment_Solution.ipynb",
   "provenance": [],
   "toc_visible": true
  },
  "coursera": {
   "schema_names": [
    "NLPC3-4A"
   ]
  },
  "grader_version": "1",
  "kernelspec": {
   "display_name": "seasme",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}