import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline, DPMSolverSDEScheduler import torch from transformers import AutoModelForObjectDetection, AutoImageProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model # Load your main diffusion pipeline if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # Load ADetailer model (from Hugging Face) adetailer_model_id = "Bingsu/adetailer" adetailer_model = AutoModelForObjectDetection.from_pretrained(adetailer_model_id) adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id) def fix_eyes_with_adetailer(image): # Convert image to format for ADetailer pixel_values = adetailer_processor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) # Run ADetailer on the image with torch.no_grad(): outputs = adetailer_model(pixel_values=pixel_values) # Post-process the outputs and apply the fixes (if any) corrected_image = image # Placeholder for the actual post-processing # Apply fixes based on the detection and correction model outputs # This step requires actual ADetailer implementation details for correcting eyes. return corrected_image # Return the corrected image @spaces.GPU #[uncomment to use ZeroGPU] def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # Apply ADetailer to fix eyes after generating the image corrected_image = fix_eyes_with_adetailer(image) return corrected_image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css="""#col-container {margin: 0 auto; max-width: 640px;}""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, #Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, #Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, #Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, #Replace with defaults that work for your model ) gr.Examples( examples=examples, inputs=[prompt] ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.queue().launch()