import gradio as gr import numpy as np import random import spaces # [uncomment to use ZeroGPU] from diffusers import DiffusionPipeline, DPMSolverSDEScheduler import torch from tags import tag_options_1, tag_options_2 # Import tags here device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU # [uncomment to use ZeroGPU] def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, use_tags, progress=gr.Progress(track_tqdm=True)): # Determine final prompt if use_tags: selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1] selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2] tags_text = ', '.join(selected_tags_1 + selected_tags_2) final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}' else: final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}' # Concatenate user-provided negative prompt with additional restrictions additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark" full_negative_prompt = f"{additional_negatives}, {negative_prompt}" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Generate the image with the final prompts image = pipe( prompt=final_prompt, negative_prompt=full_negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # Return image, seed, and the used prompts return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}" examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } #run-button { width: 100%; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # Text-to-Image Gradio Template """) # Display result image at the top result = gr.Image(label="Result", show_label=False) # Add a textbox to display the prompts used for generation prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False) # Tabbed interface to select either Prompt or Tags with gr.Tabs() as tabs: with gr.TabItem("Prompt Input"): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) use_tags = gr.State(False) with gr.TabItem("Tag Selection"): # Separate each tag section vertically with gr.Column(): tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)") with gr.Column(): tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)") use_tags = gr.State(True) # Full-width "Run" button run_button = gr.Button("Run", scale=0, elem_id="run-button") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=35, ) # gr.Examples( # examples=examples, # inputs=[prompt] # ) def check_tab(prompt, tag_selection_1, tag_selection_2, selected_tab): return selected_tab == "Tag Selection" tabs.change(check_tab, inputs=[prompt, tag_selection_1, tag_selection_2, tabs], outputs=use_tags) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, use_tags], outputs=[result, seed, prompt_info] # Include prompt_info in the outputs ) demo.queue().launch()