Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,46 +4,43 @@ import random
|
|
4 |
import spaces #[uncomment to use ZeroGPU]
|
5 |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
|
6 |
import torch
|
7 |
-
from
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model
|
11 |
|
12 |
# Load your main diffusion pipeline
|
13 |
-
|
14 |
-
torch_dtype = torch.float16
|
15 |
-
else:
|
16 |
-
torch_dtype = torch.float32
|
17 |
-
|
18 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
19 |
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
|
20 |
pipe = pipe.to(device)
|
21 |
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1024
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
adetailer_processor = AutoImageProcessor.from_pretrained(adetailer_model_id)
|
29 |
|
30 |
def fix_eyes_with_adetailer(image):
|
31 |
-
# Convert image to format for
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
# Run
|
36 |
-
|
37 |
-
outputs = adetailer_model(pixel_values=pixel_values)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
@spaces.GPU
|
47 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
48 |
|
49 |
if randomize_seed:
|
@@ -51,6 +48,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
51 |
|
52 |
generator = torch.Generator().manual_seed(seed)
|
53 |
|
|
|
54 |
image = pipe(
|
55 |
prompt=prompt,
|
56 |
negative_prompt=negative_prompt,
|
@@ -61,7 +59,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
61 |
generator=generator
|
62 |
).images[0]
|
63 |
|
64 |
-
# Apply ADetailer to fix eyes after generating the image
|
65 |
corrected_image = fix_eyes_with_adetailer(image)
|
66 |
|
67 |
return corrected_image, seed
|
|
|
4 |
import spaces #[uncomment to use ZeroGPU]
|
5 |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
|
6 |
import torch
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from ultralytics import YOLO
|
9 |
+
import cv2
|
10 |
+
from PIL import Image
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Your diffusion model
|
14 |
|
15 |
# Load your main diffusion pipeline
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
17 |
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True)
|
18 |
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
+
# Download the ADetailer YOLOv8 face detection model
|
24 |
+
yolo_model_path = hf_hub_download(repo_id="Bingsu/adetailer", filename="face_yolov8n.pt")
|
25 |
+
yolo_model = YOLO(yolo_model_path)
|
|
|
26 |
|
27 |
def fix_eyes_with_adetailer(image):
|
28 |
+
# Convert PIL image to OpenCV format for YOLO
|
29 |
+
img = np.array(image)
|
30 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
31 |
|
32 |
+
# Run the YOLO model on the image
|
33 |
+
results = yolo_model(img)
|
|
|
34 |
|
35 |
+
# Visualize and process the output
|
36 |
+
pred = results[0].plot() # Draw bounding boxes and other detections
|
37 |
+
pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
|
38 |
+
|
39 |
+
# Convert the processed image back to PIL format
|
40 |
+
corrected_image = Image.fromarray(pred)
|
41 |
+
return corrected_image
|
42 |
|
43 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
44 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
45 |
|
46 |
if randomize_seed:
|
|
|
48 |
|
49 |
generator = torch.Generator().manual_seed(seed)
|
50 |
|
51 |
+
# Generate the initial image with the diffusion model
|
52 |
image = pipe(
|
53 |
prompt=prompt,
|
54 |
negative_prompt=negative_prompt,
|
|
|
59 |
generator=generator
|
60 |
).images[0]
|
61 |
|
62 |
+
# Apply ADetailer to fix the eyes after generating the image
|
63 |
corrected_image = fix_eyes_with_adetailer(image)
|
64 |
|
65 |
return corrected_image, seed
|