Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler | |
import torch | |
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
from PIL import Image | |
import cv2 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" | |
adetailer_model_id = "Bingsu/adetailer" # Your ADetailer model | |
# Load the YOLO model for face detection | |
yolo_model_path = hf_hub_download(adetailer_model_id, "face_yolov8n.pt") | |
yolo_model = YOLO(yolo_model_path) | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="dpmsolver++", solver_order=2, use_karras_sigmas=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def correct_anime_face(image): | |
# Convert to OpenCV format | |
img = np.array(image) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
# Detect faces | |
results = yolo_model(img) | |
for detection in results[0].boxes: | |
x1, y1, x2, y2 = map(int, detection.xyxy[0].tolist()) | |
# Crop the face region | |
face = img[y1:y2, x1:x2] | |
face_pil = Image.fromarray(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) | |
# Prompt for the correction model | |
prompt = "Enhance this anime character's face, fix eyes and make features more vivid." | |
# Process the face with the anime correction model | |
corrected_face = pipe(prompt=prompt, image=face_pil).images[0] # Replace with your correction model | |
# Place the corrected face back into the original image | |
img[y1:y2, x1:x2] = np.array(corrected_face) | |
# Convert back to PIL | |
final_image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
return final_image | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Correct anime face in the generated image | |
corrected_image = correct_anime_face(image) | |
return corrected_image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Text-to-Image Gradio Template") | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0) | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=2) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on(triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed]) | |
demo.queue().launch() | |