File size: 5,495 Bytes
630d1c8
 
 
6d482fb
cce056a
630d1c8
03c18e7
630d1c8
 
6d482fb
0f8e37d
 
 
 
 
630d1c8
0f8e37d
630d1c8
 
 
 
 
6d482fb
7819529
6d482fb
7819529
 
 
 
 
 
 
8bb4602
630d1c8
 
6d482fb
630d1c8
6d482fb
630d1c8
6d482fb
 
 
 
 
 
 
 
 
8bb4602
630d1c8
 
 
 
 
 
 
6d482fb
0f8e37d
 
 
 
 
630d1c8
 
6d482fb
630d1c8
6d482fb
8bb4602
 
6d482fb
03c18e7
 
 
7819529
 
 
 
 
 
 
 
 
 
03c18e7
6d482fb
7819529
03c18e7
 
7819529
03c18e7
7819529
03c18e7
6d482fb
03c18e7
e0a5232
630d1c8
 
8bb4602
 
 
 
 
 
6d482fb
8bb4602
 
 
 
 
 
 
6d482fb
630d1c8
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
6d482fb
 
8bb4602
7819529
 
03c18e7
7819529
 
 
8bb4602
 
6d482fb
7819529
6d482fb
8bb4602
ce6ba71
6d482fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import numpy as np
import random
import spaces  # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from tags import tag_options_1, tag_options_2  # Import tags here

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, use_tags, progress=gr.Progress(track_tqdm=True)):

    if use_tags:
        selected_tags_1 = [tag_options_1[tag] for tag in tag_selection_1 if tag in tag_options_1]
        selected_tags_2 = [tag_options_2[tag] for tag in tag_selection_2 if tag in tag_options_2]
        tags_text = ', '.join(selected_tags_1 + selected_tags_2)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
    else:
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=final_prompt,
        negative_prompt='worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark, ' + negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Text-to-Image Gradio Template
        """)

        # Display result image at the top
        result = gr.Image(label="Result", show_label=False)

        # Tabbed interface to select either Prompt or Tags
        with gr.Tabs() as tabs:
            with gr.TabItem("Prompt Input"):
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                use_tags = gr.State(False)

            with gr.TabItem("Tag Selection"):
                # Separate each tag section vertically
                with gr.Column():
                    tag_selection_1 = gr.CheckboxGroup(choices=list(tag_options_1.keys()), label="Select Tags (Style)")
                with gr.Column():
                    tag_selection_2 = gr.CheckboxGroup(choices=list(tag_options_2.keys()), label="Select Tags (Theme)")
                use_tags = gr.State(True)

        # Full-width "Run" button
        run_button = gr.Button("Run", scale=0)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=35,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )

    def check_tab(prompt, tag_selection_1, tag_selection_2, selected_tab):
        return selected_tab == "Tag Selection"

    tabs.change(check_tab, inputs=[prompt, tag_selection_1, tag_selection_2, tabs], outputs=use_tags)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection_1, tag_selection_2, use_tags],
        outputs=[result, seed]
    )

demo.queue().launch()