File size: 15,733 Bytes
630d1c8
 
 
6d482fb
66d1fcc
630d1c8
a3ecd5b
630d1c8
 
02074a8
0f8e37d
 
 
 
 
630d1c8
0f8e37d
630d1c8
 
 
 
 
6d482fb
02074a8
a3ecd5b
66d1fcc
 
 
6d482fb
66d1fcc
 
 
00e6a86
 
 
02074a8
 
 
a3ecd5b
02074a8
 
 
 
 
 
 
 
 
 
 
 
 
 
7819529
8bb4602
00e6a86
 
 
 
 
a3ecd5b
00e6a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ecd5b
00e6a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d2a01
 
 
 
630d1c8
 
6d482fb
630d1c8
6d482fb
90d2a01
630d1c8
6d482fb
90d2a01
6d482fb
 
 
 
 
 
 
d16d2c8
90d2a01
 
630d1c8
 
 
 
 
 
 
6d482fb
0f8e37d
 
 
 
d16d2c8
 
 
0f8e37d
630d1c8
 
6d482fb
630d1c8
00e6a86
6d482fb
03c18e7
 
 
d16d2c8
 
 
58d31c6
 
 
7819529
 
66d1fcc
02074a8
7819529
 
 
 
 
 
58d31c6
6d482fb
00e6a86
 
 
 
a3ecd5b
00e6a86
 
 
 
 
 
 
 
 
 
 
 
94b1bd9
00e6a86
 
 
 
 
 
a3ecd5b
00e6a86
 
 
 
 
 
 
 
 
 
 
 
94b1bd9
00e6a86
 
02074a8
 
 
a3ecd5b
02074a8
 
 
 
 
 
 
 
 
 
 
 
94b1bd9
a533474
03c18e7
d16d2c8
630d1c8
 
02074a8
8bb4602
 
 
353cbbe
8bb4602
6d482fb
8bb4602
 
 
 
 
 
 
6d482fb
630d1c8
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
630d1c8
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
8bb4602
 
 
 
 
03c18e7
8bb4602
6d482fb
a533474
 
 
 
7819529
02074a8
 
66d1fcc
a3ecd5b
66d1fcc
 
58d31c6
02074a8
 
ce6ba71
6d482fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
import numpy as np
import random
import spaces  # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from tags import participant_tags, tribe_tags, role_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"  # Replace with your desired model

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
          selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
          selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
          selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
          selected_camera_tags, selected_atmosphere_tags, active_tab, progress=gr.Progress(track_tqdm=True)):

    if active_tab == "Prompt Input":
        # Use the user-provided prompt
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
    
    elif active_tab == "Straight" :
        # Use tags from the "Gay" tab
        selected_tags = (
            [participant_tags[tag] for tag in selected_participant_tags] +
            [tribe_tags[tag] for tag in selected_tribe_tags] +
            [role_tags[tag] for tag in selected_role_tags] +
            [skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
            [body_type_tags[tag] for tag in selected_body_type_tags] +
            [tattoo_tags[tag] for tag in selected_tattoo_tags] +
            [piercing_tags[tag] for tag in selected_piercing_tags] +
            [expression_tags[tag] for tag in selected_expression_tags] +
            [eye_tags[tag] for tag in selected_eye_tags] +
            [hair_style_tags[tag] for tag in selected_hair_style_tags] +
            [position_tags[tag] for tag in selected_position_tags] +
            [fetish_tags[tag] for tag in selected_fetish_tags] +
            [location_tags[tag] for tag in selected_location_tags] +
            [camera_tags[tag] for tag in selected_camera_tags] +
            [atmosphere_tags[tag] for tag in selected_atmosphere_tags]
        )
        tags_text = ', '.join(selected_tags)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'

    elif active_tab == "Gay" :
        # Use tags from the "Gay" tab
        selected_tags = (
            [participant_tags[tag] for tag in selected_participant_tags] +
            [tribe_tags[tag] for tag in selected_tribe_tags] +
            [role_tags[tag] for tag in selected_role_tags] +
            [skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
            [body_type_tags[tag] for tag in selected_body_type_tags] +
            [tattoo_tags[tag] for tag in selected_tattoo_tags] +
            [piercing_tags[tag] for tag in selected_piercing_tags] +
            [expression_tags[tag] for tag in selected_expression_tags] +
            [eye_tags[tag] for tag in selected_eye_tags] +
            [hair_style_tags[tag] for tag in selected_hair_style_tags] +
            [position_tags[tag] for tag in selected_position_tags] +
            [fetish_tags[tag] for tag in selected_fetish_tags] +
            [location_tags[tag] for tag in selected_location_tags] +
            [camera_tags[tag] for tag in selected_camera_tags] +
            [atmosphere_tags[tag] for tag in selected_atmosphere_tags]
        )
        tags_text = ', '.join(selected_tags)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
        
    elif active_tab == "Lesbian" :
        # Use tags from the "Lesbien" tab
        selected_tags = (
            [participant_tags[tag] for tag in selected_participant_tags] +
            [tribe_tags[tag] for tag in selected_tribe_tags] +
            [role_tags[tag] for tag in selected_role_tags] +
            [skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
            [body_type_tags[tag] for tag in selected_body_type_tags] +
            [tattoo_tags[tag] for tag in selected_tattoo_tags] +
            [piercing_tags[tag] for tag in selected_piercing_tags] +
            [expression_tags[tag] for tag in selected_expression_tags] +
            [eye_tags[tag] for tag in selected_eye_tags] +
            [hair_style_tags[tag] for tag in selected_hair_style_tags] +
            [position_tags[tag] for tag in selected_position_tags] +
            [fetish_tags[tag] for tag in selected_fetish_tags] +
            [location_tags[tag] for tag in selected_location_tags] +
            [camera_tags[tag] for tag in selected_camera_tags] +
            [atmosphere_tags[tag] for tag in selected_atmosphere_tags]
        )
        tags_text = ', '.join(selected_tags)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
    
    # Concatenate user-provided negative prompt with additional restrictions
    additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
    full_negative_prompt = f"{additional_negatives}, {negative_prompt}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate the image with the final prompts
    image = pipe(
        prompt=final_prompt,
        negative_prompt=full_negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    # Return image, seed, and the used prompts
    return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
#run-button {
    width: 100%;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# Rainbow Media X""")

        # Display result image at the top
        result = gr.Image(label="Result", show_label=False)

        # Add a textbox to display the prompts used for generation
        prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)

        # State to track active tab
        active_tab = gr.State("Prompt Input")

        # Tabbed interface to select either Prompt or Tags
        with gr.Tabs() as tabs:
            with gr.TabItem("Prompt Input") as prompt_tab:
                prompt = gr.Textbox(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                prompt_tab.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)

            with gr.TabItem("Straight") as straight_tag_tab:
                # Tag selection checkboxes for each tag group
                selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
                selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
                selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
                selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
                selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
                selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
                selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
                selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
                selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
                selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
                selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
                selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
                selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
                selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
                selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
                straight_tag_tab.select(lambda: "Straight", inputs=None, outputs=active_tab)
                
            
            with gr.TabItem("Gay") as gay_tag_tab:
                # Tag selection checkboxes for each tag group
                selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
                selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
                selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
                selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
                selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
                selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
                selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
                selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
                selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
                selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
                selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
                selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
                selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
                selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
                selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
                gay_tag_tab.select(lambda: "Gay", inputs=None, outputs=active_tab)

            with gr.TabItem("Lesbian") as lesbian_tag_tab:
                # Tag selection checkboxes for each tag group
                selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
                selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
                selected_role_tags = gr.CheckboxGroup(choices=list(role_tags.keys()), label="Role Tags")
                selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
                selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
                selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
                selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
                selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
                selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
                selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
                selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
                selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
                selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
                selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
                selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
                lesbian_tag_tab.select(lambda: "Lesbian", inputs=None, outputs=active_tab)

        # Full-width "Run" button
        run_button = gr.Button("Run", scale=0, elem_id="run-button")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=35,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )

        run_button.click(
            infer,
            inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
                    selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
                    selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
                    selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
                    selected_camera_tags, selected_atmosphere_tags, active_tab],
            outputs=[result, seed, prompt_info]
        )

demo.queue().launch()