Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,872 Bytes
630d1c8 6d482fb cce056a 630d1c8 238fe34 630d1c8 02074a8 0f8e37d 630d1c8 0f8e37d 630d1c8 6d482fb 02074a8 6d482fb 02074a8 7819529 02074a8 7819529 8bb4602 90d2a01 630d1c8 6d482fb 630d1c8 6d482fb 90d2a01 630d1c8 6d482fb 90d2a01 6d482fb d16d2c8 90d2a01 630d1c8 6d482fb 0f8e37d d16d2c8 0f8e37d 630d1c8 6d482fb 630d1c8 a533474 6d482fb 03c18e7 d16d2c8 7819529 02074a8 7819529 03c18e7 6d482fb 7819529 02074a8 a533474 03c18e7 6d482fb 03c18e7 d16d2c8 630d1c8 02074a8 8bb4602 353cbbe 8bb4602 6d482fb 8bb4602 6d482fb 630d1c8 6d482fb 630d1c8 8bb4602 03c18e7 8bb4602 6d482fb 8bb4602 03c18e7 8bb4602 6d482fb 630d1c8 8bb4602 03c18e7 8bb4602 6d482fb 8bb4602 03c18e7 8bb4602 6d482fb a533474 7819529 02074a8 ce6ba71 6d482fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import numpy as np
import random
import spaces # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
import torch
from tags import participant_tags, tribe_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags # Import tags here
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, use_tags, progress=gr.Progress(track_tqdm=True)):
# Construct final prompt using selected tags if `use_tags` is True
if use_tags:
selected_tags = (
[participant_tags[tag] for tag in selected_participant_tags] +
[tribe_tags[tag] for tag in selected_tribe_tags] +
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
[body_type_tags[tag] for tag in selected_body_type_tags] +
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
[piercing_tags[tag] for tag in selected_piercing_tags] +
[expression_tags[tag] for tag in selected_expression_tags] +
[eye_tags[tag] for tag in selected_eye_tags] +
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
[position_tags[tag] for tag in selected_position_tags] +
[fetish_tags[tag] for tag in selected_fetish_tags] +
[location_tags[tag] for tag in selected_location_tags] +
[camera_tags[tag] for tag in selected_camera_tags] +
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
)
tags_text = ', '.join(selected_tags)
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
else:
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
# Concatenate user-provided negative prompt with additional restrictions
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate the image with the final prompts
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Return image, seed, and the used prompts
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
#run-button {
width: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# Text-to-Image Gradio Template""")
# Display result image at the top
result = gr.Image(label="Result", show_label=False)
# Add a textbox to display the prompts used for generation
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
# Tabbed interface to select either Prompt or Tags
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input"):
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
use_tags = gr.State(False)
with gr.TabItem("Tag Selection"):
# Tag selection checkboxes for each tag group
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
use_tags = gr.State(True)
# Full-width "Run" button
run_button = gr.Button("Run", scale=0, elem_id="run-button")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=35,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
run_button.click(
infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, use_tags],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()
|