Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,44 +47,11 @@ from tensorflow import keras
|
|
47 |
from PIL import Image
|
48 |
|
49 |
# Cell 1: Image Classification Model
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
'brown-glass',
|
56 |
-
'cardboard',
|
57 |
-
'clothes',
|
58 |
-
'green-glass',
|
59 |
-
'metal',
|
60 |
-
'paper',
|
61 |
-
'plastic',
|
62 |
-
'shoes',
|
63 |
-
'trash',
|
64 |
-
'white-glass']
|
65 |
-
|
66 |
-
# Function to predict image label and score
|
67 |
-
def predict_image(input):
|
68 |
-
# Resize the image to the size expected by the model
|
69 |
-
image = input.resize((244, 224))
|
70 |
-
# Convert the image to a NumPy array
|
71 |
-
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
72 |
-
# Normalize the image
|
73 |
-
image_array /= 255.0
|
74 |
-
# Expand the dimensions to create a batch
|
75 |
-
image_array = tf.expand_dims(image_array, 0)
|
76 |
-
# Predict using the model
|
77 |
-
predictions = model1.predict(image_array)
|
78 |
-
|
79 |
-
# Get the predicted class label
|
80 |
-
predicted_class_index = tf.argmax(predictions, axis=1).numpy()[0]
|
81 |
-
predicted_class_label = class_labels[predicted_class_index]
|
82 |
-
|
83 |
-
# Get the confidence score of the predicted class
|
84 |
-
confidence_score = predictions[0][predicted_class_index]
|
85 |
-
|
86 |
-
# Return predicted class label and confidence score
|
87 |
-
return {predicted_class_label: confidence_score}
|
88 |
|
89 |
|
90 |
image_gradio_app = gr.Interface(
|
@@ -95,100 +62,12 @@ image_gradio_app = gr.Interface(
|
|
95 |
theme=theme
|
96 |
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
# split documents
|
101 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
102 |
-
chunk_size=1024,
|
103 |
-
chunk_overlap=150,
|
104 |
-
length_function=len
|
105 |
-
)
|
106 |
-
docs = text_splitter.split_documents(data)
|
107 |
-
# define embedding
|
108 |
-
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
109 |
-
# create vector database from data
|
110 |
-
persist_directory = 'docs/chroma/'
|
111 |
-
|
112 |
-
# Remove old database files if any
|
113 |
-
shutil.rmtree(persist_directory, ignore_errors=True)
|
114 |
-
vectordb = Chroma.from_documents(
|
115 |
-
documents=docs,
|
116 |
-
embedding=embeddings,
|
117 |
-
persist_directory=persist_directory
|
118 |
-
)
|
119 |
-
# define retriever
|
120 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")
|
121 |
-
|
122 |
-
class FinalAnswer(BaseModel):
|
123 |
-
question: str = Field(description="the original question")
|
124 |
-
answer: str = Field(description="the extracted answer")
|
125 |
-
|
126 |
-
# Assuming you have a parser for the FinalAnswer class
|
127 |
-
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
128 |
-
|
129 |
-
template = """
|
130 |
-
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
131 |
-
Use the following pieces of context to answer the question /
|
132 |
-
If the question is English answer in English /
|
133 |
-
If the question is Spanish answer in Spanish /
|
134 |
-
Do not mention the word context when you answer a question /
|
135 |
-
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
|
136 |
-
Context: {context}
|
137 |
-
User: {question}
|
138 |
-
{format_instructions}
|
139 |
-
"""
|
140 |
-
|
141 |
-
# Create the chat prompt templates
|
142 |
-
sys_prompt = SystemMessagePromptTemplate.from_template(template)
|
143 |
-
qa_prompt = ChatPromptTemplate(
|
144 |
-
messages=[
|
145 |
-
sys_prompt,
|
146 |
-
HumanMessagePromptTemplate.from_template("{question}")],
|
147 |
-
partial_variables={"format_instructions": parser.get_format_instructions()}
|
148 |
-
)
|
149 |
-
llm = HuggingFaceHub(
|
150 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
151 |
-
task="text-generation",
|
152 |
-
model_kwargs={
|
153 |
-
"max_new_tokens": 2000,
|
154 |
-
"top_k": 30,
|
155 |
-
"temperature": 0.1,
|
156 |
-
"repetition_penalty": 1.03
|
157 |
-
},
|
158 |
-
)
|
159 |
-
|
160 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
161 |
-
llm = llm,
|
162 |
-
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
|
163 |
-
retriever = retriever,
|
164 |
-
verbose = True,
|
165 |
-
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
166 |
-
get_chat_history = lambda h : h,
|
167 |
-
rephrase_question = False,
|
168 |
-
output_key = 'output',
|
169 |
-
)
|
170 |
-
|
171 |
-
def chat_interface(question,history):
|
172 |
-
result = qa_chain.invoke({'question': question})
|
173 |
-
output_string = result['output']
|
174 |
-
|
175 |
-
# Find the index of the last occurrence of "answer": in the string
|
176 |
-
answer_index = output_string.rfind('"answer":')
|
177 |
-
|
178 |
-
# Extract the substring starting from the "answer": index
|
179 |
-
answer_part = output_string[answer_index + len('"answer":'):].strip()
|
180 |
-
|
181 |
-
# Find the next occurrence of a double quote to get the start of the answer value
|
182 |
-
quote_index = answer_part.find('"')
|
183 |
-
|
184 |
-
# Extract the answer value between double quotes
|
185 |
-
answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
|
186 |
-
|
187 |
-
return answer_value
|
188 |
|
189 |
|
190 |
chatbot_gradio_app = gr.ChatInterface(
|
191 |
-
fn=
|
192 |
title=custom_title
|
193 |
)
|
194 |
|
|
|
47 |
from PIL import Image
|
48 |
|
49 |
# Cell 1: Image Classification Model
|
50 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
51 |
+
|
52 |
+
def predict_image(image):
|
53 |
+
predictions = pipeline(image)
|
54 |
+
return {p["label"]: p["score"] for p in predictions}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
image_gradio_app = gr.Interface(
|
|
|
62 |
theme=theme
|
63 |
)
|
64 |
|
65 |
+
def echo(message, history):
|
66 |
+
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
chatbot_gradio_app = gr.ChatInterface(
|
70 |
+
fn=echo,
|
71 |
title=custom_title
|
72 |
)
|
73 |
|