Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,12 +40,41 @@ import shutil
|
|
| 40 |
custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>"
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Cell 1: Image Classification Model
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
def predict_image(input_img):
|
| 47 |
-
predictions = image_pipeline(input_img)
|
| 48 |
-
return {p["label"]: p["score"] for p in predictions}
|
| 49 |
|
| 50 |
image_gradio_app = gr.Interface(
|
| 51 |
fn=predict_image,
|
|
|
|
| 40 |
custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>"
|
| 41 |
|
| 42 |
|
| 43 |
+
from huggingface_hub import from_pretrained_keras
|
| 44 |
+
|
| 45 |
+
import tensorflow as tf
|
| 46 |
+
from tensorflow import keras
|
| 47 |
+
from PIL import Image
|
| 48 |
+
|
| 49 |
# Cell 1: Image Classification Model
|
| 50 |
+
model1 = from_pretrained_keras("rocioadlc/EfficientNetV2L")
|
| 51 |
+
|
| 52 |
+
# Define class labels
|
| 53 |
+
class_labels = ['cardboard', 'compost', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
| 54 |
+
|
| 55 |
+
# Function to predict image label and score
|
| 56 |
+
def predict_image(input):
|
| 57 |
+
# Resize the image to the size expected by the model
|
| 58 |
+
image = input.resize((224, 224))
|
| 59 |
+
# Convert the image to a NumPy array
|
| 60 |
+
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
| 61 |
+
# Normalize the image
|
| 62 |
+
image_array /= 255.0
|
| 63 |
+
# Expand the dimensions to create a batch
|
| 64 |
+
image_array = tf.expand_dims(image_array, 0)
|
| 65 |
+
# Predict using the model
|
| 66 |
+
predictions = model1.predict(image_array)
|
| 67 |
+
|
| 68 |
+
# Get the predicted class label
|
| 69 |
+
predicted_class_index = tf.argmax(predictions, axis=1).numpy()[0]
|
| 70 |
+
predicted_class_label = class_labels[predicted_class_index]
|
| 71 |
+
|
| 72 |
+
# Get the confidence score of the predicted class
|
| 73 |
+
confidence_score = predictions[0][predicted_class_index]
|
| 74 |
+
|
| 75 |
+
# Return input image path, predicted class label, and confidence score
|
| 76 |
+
return input, {predicted_class_label: confidence_score}
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
image_gradio_app = gr.Interface(
|
| 80 |
fn=predict_image,
|