Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,40 +7,13 @@ theme = theme.Theme()
|
|
7 |
|
8 |
|
9 |
|
10 |
-
import os
|
11 |
-
import sys
|
12 |
-
sys.path.append('../..')
|
13 |
-
|
14 |
-
#langchain
|
15 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
16 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
17 |
-
from langchain.prompts import PromptTemplate
|
18 |
-
from langchain.chains import RetrievalQA
|
19 |
-
from langchain.prompts import ChatPromptTemplate
|
20 |
-
from langchain.schema import StrOutputParser
|
21 |
-
from langchain.schema.runnable import Runnable
|
22 |
-
from langchain.schema.runnable.config import RunnableConfig
|
23 |
-
from langchain.chains import (
|
24 |
-
LLMChain, ConversationalRetrievalChain)
|
25 |
-
from langchain.vectorstores import Chroma
|
26 |
-
from langchain.memory import ConversationBufferMemory
|
27 |
-
from langchain.chains import LLMChain
|
28 |
-
from langchain.prompts.prompt import PromptTemplate
|
29 |
-
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
|
30 |
-
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
31 |
-
from langchain.document_loaders import PyPDFDirectoryLoader
|
32 |
-
|
33 |
-
from langchain_community.llms import HuggingFaceHub
|
34 |
-
|
35 |
-
from pydantic import BaseModel
|
36 |
-
import shutil
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
# Cell 1: Image Classification Model
|
43 |
-
image_pipeline = pipeline(task="image-classification", model="
|
44 |
|
45 |
def predict_image(input_img):
|
46 |
predictions = image_pipeline(input_img)
|
@@ -56,81 +29,11 @@ image_gradio_app = gr.Interface(
|
|
56 |
|
57 |
# Cell 2: Chatbot Model
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
# split documents
|
62 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
63 |
-
chunk_size=500,
|
64 |
-
chunk_overlap=70,
|
65 |
-
length_function=len
|
66 |
-
)
|
67 |
-
docs = text_splitter.split_documents(data)
|
68 |
-
# define embedding
|
69 |
-
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
70 |
-
# create vector database from data
|
71 |
-
persist_directory = 'docs/chroma/'
|
72 |
-
|
73 |
-
# Remove old database files if any
|
74 |
-
shutil.rmtree(persist_directory, ignore_errors=True)
|
75 |
-
vectordb = Chroma.from_documents(
|
76 |
-
documents=docs,
|
77 |
-
embedding=embeddings,
|
78 |
-
persist_directory=persist_directory
|
79 |
-
)
|
80 |
-
# define retriever
|
81 |
-
retriever = vectordb.as_retriever(search_type="mmr")
|
82 |
-
template = """
|
83 |
-
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
84 |
-
Use the following pieces of context to answer the question if the question is related with recycling /
|
85 |
-
No more than two chunks of context /
|
86 |
-
Answer in the same language of the question /
|
87 |
-
Always say "thanks for asking!" at the end of the answer /
|
88 |
-
If the context is not relevant, please answer the question by using your own knowledge about the topic.
|
89 |
-
|
90 |
-
context: {context}
|
91 |
-
question: {question}
|
92 |
-
"""
|
93 |
-
|
94 |
-
# Create the chat prompt templates
|
95 |
-
system_prompt = SystemMessagePromptTemplate.from_template(template)
|
96 |
-
qa_prompt = ChatPromptTemplate(
|
97 |
-
messages=[
|
98 |
-
system_prompt,
|
99 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
100 |
-
HumanMessagePromptTemplate.from_template("{question}")
|
101 |
-
]
|
102 |
-
)
|
103 |
-
llm = HuggingFaceHub(
|
104 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
105 |
-
task="text-generation",
|
106 |
-
model_kwargs={
|
107 |
-
"max_new_tokens": 1024,
|
108 |
-
"top_k": 30,
|
109 |
-
"temperature": 0.1,
|
110 |
-
"repetition_penalty": 1.03,
|
111 |
-
},
|
112 |
-
)
|
113 |
-
|
114 |
-
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
115 |
-
|
116 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
117 |
-
llm = llm,
|
118 |
-
memory = memory,
|
119 |
-
retriever = retriever,
|
120 |
-
verbose = True,
|
121 |
-
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
122 |
-
get_chat_history = lambda h : h,
|
123 |
-
rephrase_question = False,
|
124 |
-
output_key = 'answer'
|
125 |
-
)
|
126 |
-
|
127 |
-
def chat_interface(question,history):
|
128 |
-
|
129 |
-
result = qa_chain.invoke({"question": question})
|
130 |
-
return result['answer'] # If the result is a string, return it directly
|
131 |
|
132 |
chatbot_gradio_app = gr.ChatInterface(
|
133 |
-
fn=
|
134 |
title='Green Greta'
|
135 |
)
|
136 |
|
|
|
7 |
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
# Cell 1: Image Classification Model
|
16 |
+
image_pipeline = pipeline(task="image-classification", model="rocioadlc/TrashNet_ResNet152V2")
|
17 |
|
18 |
def predict_image(input_img):
|
19 |
predictions = image_pipeline(input_img)
|
|
|
29 |
|
30 |
# Cell 2: Chatbot Model
|
31 |
|
32 |
+
def echo(message, history):
|
33 |
+
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
chatbot_gradio_app = gr.ChatInterface(
|
36 |
+
fn=echo,
|
37 |
title='Green Greta'
|
38 |
)
|
39 |
|