Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,9 +6,33 @@ import theme
|
|
| 6 |
theme = theme.Theme()
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
|
|
@@ -29,11 +53,81 @@ image_gradio_app = gr.Interface(
|
|
| 29 |
|
| 30 |
# Cell 2: Chatbot Model
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
chatbot_gradio_app = gr.ChatInterface(
|
| 36 |
-
fn=
|
| 37 |
title='Green Greta'
|
| 38 |
)
|
| 39 |
|
|
|
|
| 6 |
theme = theme.Theme()
|
| 7 |
|
| 8 |
|
| 9 |
+
import os
|
| 10 |
+
import sys
|
| 11 |
+
sys.path.append('../..')
|
| 12 |
|
| 13 |
+
#langchain
|
| 14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
| 15 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 16 |
+
from langchain.prompts import PromptTemplate
|
| 17 |
+
from langchain.chains import RetrievalQA
|
| 18 |
+
from langchain.prompts import ChatPromptTemplate
|
| 19 |
+
from langchain.schema import StrOutputParser
|
| 20 |
+
from langchain.schema.runnable import Runnable
|
| 21 |
+
from langchain.schema.runnable.config import RunnableConfig
|
| 22 |
+
from langchain.chains import (
|
| 23 |
+
LLMChain, ConversationalRetrievalChain)
|
| 24 |
+
from langchain.vectorstores import Chroma
|
| 25 |
+
from langchain.memory import ConversationBufferMemory
|
| 26 |
+
from langchain.chains import LLMChain
|
| 27 |
+
from langchain.prompts.prompt import PromptTemplate
|
| 28 |
+
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
|
| 29 |
+
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
| 30 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 31 |
|
| 32 |
+
from langchain_community.llms import HuggingFaceHub
|
| 33 |
|
| 34 |
+
from pydantic import BaseModel
|
| 35 |
+
import shutil
|
| 36 |
|
| 37 |
|
| 38 |
|
|
|
|
| 53 |
|
| 54 |
# Cell 2: Chatbot Model
|
| 55 |
|
| 56 |
+
loader = PyPDFDirectoryLoader('pdfs')
|
| 57 |
+
data=loader.load()
|
| 58 |
+
# split documents
|
| 59 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 60 |
+
chunk_size=500,
|
| 61 |
+
chunk_overlap=70,
|
| 62 |
+
length_function=len
|
| 63 |
+
)
|
| 64 |
+
docs = text_splitter.split_documents(data)
|
| 65 |
+
# define embedding
|
| 66 |
+
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
| 67 |
+
# create vector database from data
|
| 68 |
+
persist_directory = 'docs/chroma/'
|
| 69 |
+
|
| 70 |
+
# Remove old database files if any
|
| 71 |
+
shutil.rmtree(persist_directory, ignore_errors=True)
|
| 72 |
+
vectordb = Chroma.from_documents(
|
| 73 |
+
documents=docs,
|
| 74 |
+
embedding=embeddings,
|
| 75 |
+
persist_directory=persist_directory
|
| 76 |
+
)
|
| 77 |
+
# define retriever
|
| 78 |
+
retriever = vectordb.as_retriever(search_type="mmr")
|
| 79 |
+
template = """
|
| 80 |
+
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
| 81 |
+
Use the following pieces of context to answer the question if the question is related with recycling /
|
| 82 |
+
No more than two chunks of context /
|
| 83 |
+
Answer in the same language of the question /
|
| 84 |
+
Always say "thanks for asking!" at the end of the answer /
|
| 85 |
+
If the context is not relevant, please answer the question by using your own knowledge about the topic.
|
| 86 |
+
|
| 87 |
+
context: {context}
|
| 88 |
+
question: {question}
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
# Create the chat prompt templates
|
| 92 |
+
system_prompt = SystemMessagePromptTemplate.from_template(template)
|
| 93 |
+
qa_prompt = ChatPromptTemplate(
|
| 94 |
+
messages=[
|
| 95 |
+
system_prompt,
|
| 96 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 97 |
+
HumanMessagePromptTemplate.from_template("{question}")
|
| 98 |
+
]
|
| 99 |
+
)
|
| 100 |
+
llm = HuggingFaceHub(
|
| 101 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 102 |
+
task="text-generation",
|
| 103 |
+
model_kwargs={
|
| 104 |
+
"max_new_tokens": 1024,
|
| 105 |
+
"top_k": 30,
|
| 106 |
+
"temperature": 0.1,
|
| 107 |
+
"repetition_penalty": 1.03,
|
| 108 |
+
},
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
| 112 |
+
|
| 113 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 114 |
+
llm = llm,
|
| 115 |
+
memory = memory,
|
| 116 |
+
retriever = retriever,
|
| 117 |
+
verbose = True,
|
| 118 |
+
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
| 119 |
+
get_chat_history = lambda h : h,
|
| 120 |
+
rephrase_question = False,
|
| 121 |
+
output_key = 'answer'
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def chat_interface(question,history):
|
| 125 |
+
|
| 126 |
+
result = qa_chain.invoke({"question": question})
|
| 127 |
+
return result['answer'] # If the result is a string, return it directly
|
| 128 |
|
| 129 |
chatbot_gradio_app = gr.ChatInterface(
|
| 130 |
+
fn=chat_interface,
|
| 131 |
title='Green Greta'
|
| 132 |
)
|
| 133 |
|