Spaces:
Sleeping
Sleeping
import torch | |
import re | |
from PIL import Image | |
import requests | |
import streamlit as st | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
from PIL import Image | |
import requests | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.document_loaders import ImageCaptionLoader | |
st.set_page_config(page_title="Captionize") | |
st.title("π€ Captionize") | |
st.subheader("Generate Captions for your Image...") | |
st.sidebar.image('./csv_analysis.png',width=300, use_column_width=True) | |
# Applying Styling | |
st.markdown(""" | |
<style> | |
div.stButton > button:first-child { | |
background-color: #0099ff; | |
color:#ffffff; | |
} | |
div.stButton > button:hover { | |
background-color: #00ff00; | |
color:#FFFFFF; | |
} | |
</style>""", unsafe_allow_html=True) | |
#pic = st.file_uploader(label="Please upload any Image here π",type=['png', 'jpeg', 'jpg'], help="Only 'png', 'jpeg' or 'jpg' formats allowed") | |
examples = [f"example{i}.jpg" for i in range(1,7)] | |
#Image.open(requests.get(pic, stream=True).raw).convert("RGB") | |
loader = ImageCaptionLoader(path_images=examples) | |
list_docs = loader.load() | |
index = VectorstoreIndexCreator().from_loaders([loader]) | |
button = st.button("Generate Caption") | |
query = st.text_area("Enter your query π") | |
if button: | |
Image.open(requests.get(examples[0], stream=True).raw).convert("RGB") | |
# Get Response | |
caption = index.query(query) | |
st.write(caption) |