import gradio as gr import torch from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from huggingface_hub import login import os # Use the secret stored in the Hugging Face space token = os.getenv("HF_TOKEN") login(token=token) DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Function to Transcribe & Generate Minutes def process_audio(audio_file): if audio_file is None: return "Error: No audio provided!" # Whisper Model Optimization model = "openai/whisper-tiny" processor = AutoProcessor.from_pretrained(model) transcriber = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else "cpu", ) # Transcribe audio transcript = transcriber(audio_file,return_timestamps=True)["text"] del transcriber del processor # LLaMA Model Optimization LLAMA = "meta-llama/Llama-3.2-3B-Instruct" llama_quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4" ) tokenizer = AutoTokenizer.from_pretrained(LLAMA) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( LLAMA, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" ) # Generate meeting minutes system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown." user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_prompt} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE) streamer = TextStreamer(tokenizer) outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio Interface interface = gr.Interface( fn=process_audio, inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"), outputs="text", title="Meeting Minutes Generator", description="Upload or record an audio file to get structured meeting minutes in Markdown.", ) # Launch App interface.launch()