Update app.py
Browse files
app.py
CHANGED
|
@@ -6,12 +6,7 @@ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndB
|
|
| 6 |
WHISPER_MODEL = "openai/whisper-large-v3"
|
| 7 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
-
|
| 10 |
-
load_in_4bit=True,
|
| 11 |
-
bnb_4bit_use_double_quant=True,
|
| 12 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 13 |
-
bnb_4bit_quant_type="nf4"
|
| 14 |
-
)
|
| 15 |
|
| 16 |
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 17 |
WHISPER_MODEL,
|
|
@@ -21,11 +16,11 @@ whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
| 21 |
|
| 22 |
whisper_tokenizer = AutoTokenizer.from_pretrained(WHISPER_MODEL)
|
| 23 |
transcriber = pipeline(
|
| 24 |
-
|
| 25 |
-
model=
|
| 26 |
-
tokenizer=
|
| 27 |
-
|
| 28 |
-
device=
|
| 29 |
)
|
| 30 |
|
| 31 |
# LLaMA Model Optimization
|
|
|
|
| 6 |
WHISPER_MODEL = "openai/whisper-large-v3"
|
| 7 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 12 |
WHISPER_MODEL,
|
|
|
|
| 16 |
|
| 17 |
whisper_tokenizer = AutoTokenizer.from_pretrained(WHISPER_MODEL)
|
| 18 |
transcriber = pipeline(
|
| 19 |
+
"automatic-speech-recognition",
|
| 20 |
+
model=model,
|
| 21 |
+
tokenizer=processor.tokenizer,
|
| 22 |
+
feature_extractor=processor.feature_extractor,
|
| 23 |
+
device=0 if torch.cuda.is_available() else "cpu",
|
| 24 |
)
|
| 25 |
|
| 26 |
# LLaMA Model Optimization
|