palbha commited on
Commit
561e595
·
verified ·
1 Parent(s): 865f75c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -23,22 +23,7 @@ transcriber = pipeline(
23
  device=0 if torch.cuda.is_available() else "cpu",
24
  )
25
 
26
- # LLaMA Model Optimization
27
- LLAMA = "meta-llama/Llama-3.2-3B-Instruct"
28
- llama_quant_config = BitsAndBytesConfig(
29
- load_in_4bit=True,
30
- bnb_4bit_use_double_quant=True,
31
- bnb_4bit_compute_dtype=torch.bfloat16,
32
- bnb_4bit_quant_type="nf4"
33
- )
34
 
35
- tokenizer = AutoTokenizer.from_pretrained(LLAMA)
36
- tokenizer.pad_token = tokenizer.eos_token
37
- model = AutoModelForCausalLM.from_pretrained(
38
- LLAMA,
39
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
40
- device_map="auto"
41
- )
42
 
43
  # Function to Transcribe & Generate Minutes
44
  def process_audio(audio_file):
@@ -49,6 +34,22 @@ def process_audio(audio_file):
49
  transcript = transcriber(audio_file)["text"]
50
  del transcriber
51
  del processor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  # Generate meeting minutes
53
  system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown."
54
  user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}"
 
23
  device=0 if torch.cuda.is_available() else "cpu",
24
  )
25
 
 
 
 
 
 
 
 
 
26
 
 
 
 
 
 
 
 
27
 
28
  # Function to Transcribe & Generate Minutes
29
  def process_audio(audio_file):
 
34
  transcript = transcriber(audio_file)["text"]
35
  del transcriber
36
  del processor
37
+ # LLaMA Model Optimization
38
+ LLAMA = "meta-llama/Llama-3.2-3B-Instruct"
39
+ llama_quant_config = BitsAndBytesConfig(
40
+ load_in_4bit=True,
41
+ bnb_4bit_use_double_quant=True,
42
+ bnb_4bit_compute_dtype=torch.bfloat16,
43
+ bnb_4bit_quant_type="nf4"
44
+ )
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained(LLAMA)
47
+ tokenizer.pad_token = tokenizer.eos_token
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ LLAMA,
50
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
51
+ device_map="auto"
52
+ )
53
  # Generate meeting minutes
54
  system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown."
55
  user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}"