Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
|
4 |
+
|
5 |
+
# Whisper Model for Transcription
|
6 |
+
WHISPER_MODEL = "openai/whisper-large-v3"
|
7 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
transcriber = pipeline(
|
10 |
+
task="automatic-speech-recognition",
|
11 |
+
model=WHISPER_MODEL,
|
12 |
+
chunk_length_s=30,
|
13 |
+
device=DEVICE,
|
14 |
+
)
|
15 |
+
|
16 |
+
# LLaMA Model for Generating Meeting Minutes
|
17 |
+
LLAMA = "meta-llama/Llama-2-7b-chat-hf" # Change to your preferred model
|
18 |
+
quant_config = BitsAndBytesConfig(
|
19 |
+
load_in_4bit=True,
|
20 |
+
bnb_4bit_use_double_quant=True,
|
21 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
22 |
+
bnb_4bit_quant_type="nf4"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Load Model & Tokenizer
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(LLAMA)
|
27 |
+
tokenizer.pad_token = tokenizer.eos_token
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map="auto", quantization_config=quant_config)
|
29 |
+
|
30 |
+
# Function to Transcribe & Generate Minutes
|
31 |
+
def process_audio(audio_file):
|
32 |
+
if audio_file is None:
|
33 |
+
return "Error: No audio provided!"
|
34 |
+
|
35 |
+
# Transcribe audio
|
36 |
+
transcript = transcriber(audio_file)["text"]
|
37 |
+
|
38 |
+
# Generate meeting minutes
|
39 |
+
system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown."
|
40 |
+
user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}"
|
41 |
+
|
42 |
+
messages = [
|
43 |
+
{"role": "system", "content": system_message},
|
44 |
+
{"role": "user", "content": user_prompt}
|
45 |
+
]
|
46 |
+
|
47 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE)
|
48 |
+
streamer = TextStreamer(tokenizer)
|
49 |
+
outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer)
|
50 |
+
|
51 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
|
53 |
+
# Gradio Interface
|
54 |
+
interface = gr.Interface(
|
55 |
+
fn=process_audio,
|
56 |
+
inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
57 |
+
outputs="text",
|
58 |
+
title="Meeting Minutes Generator",
|
59 |
+
description="Upload or record an audio file to get structured meeting minutes in Markdown.",
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch App
|
63 |
+
interface.launch()
|