Spaces:
Runtime error
Runtime error
import gradio as gr | |
from ppdiffusers import StableDiffusionPipeline | |
import os | |
import git | |
# 获取模型参数 | |
repo = git.Repo.clone_from(url='https://huggingface.co/Liyulingyue/Neolle_Face_Generator', to_path="./dream_outputs") | |
# 加载模型 | |
model_path = "dream_outputs" | |
pipe = StableDiffusionPipeline.from_pretrained(model_path) | |
def generate_images(prompt="Neolle", num_inference_steps=50, guidance_scale=7.5): | |
image = pipe(prompt, num_inference_steps=int(num_inference_steps),guidance_scale=float(guidance_scale)).images[0] | |
# image = os.getcwd() | |
return image | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# 诺艾尔生成器 | |
基于 Linaqruf/anything-v3.0 训练,采用DreamBooth的技术并使用a photo of Neolle文本进行了训练。用于微调的图片共10张,均为原神角色诺艾尔,batch_size取1,学习率是5e-6,共训练1000步。 | |
Hugging face的CPU环境num_inference_steps=50时,大约需要运行1200s。 | |
如果推理结果包含色情内容,会返回一张纯黑图片~ 如果出现纯黑图片请重新运行 | |
欢迎大家从 https://huggingface.co/Liyulingyue/Neolle_Face_Generator 下载模型到本地运行, 20s即可出图, 该链接包含运行示例代码~ | |
## 输入参数如下: | |
- prompt:提示语 | |
- num_inference_steps: 推理轮次,越高越耗时,能够提高画作结果的精细程度,默认50 | |
- guidance_scale:训练图片的影响度,如果无法满足提示词描述的场景,可以降低该值,默认7.5 | |
## 推荐的提示词示例: | |
- Noelle with glasses | |
- Noelle with sunglasses | |
- Noelle with dark hair, beautiful eyes | |
- Noelle, 20 years old | |
- Noelle playing basketball | |
- Noelle with cat ears, blue hair | |
""") | |
gr.Interface(fn=generate_images, | |
inputs=["text","text","text"], | |
outputs="image") | |
if __name__ == "__main__": | |
demo.launch() | |