Liyulingyue's picture
Update app.py
5c61552
raw
history blame
2.24 kB
import gradio as gr
from ppdiffusers import StableDiffusionPipeline
import os
import git
# 获取模型参数
repo = git.Repo.clone_from(url='https://huggingface.co/Liyulingyue/Neolle_Face_Generator', to_path="./dream_outputs")
# 加载模型
model_path = "dream_outputs"
pipe = StableDiffusionPipeline.from_pretrained(model_path)
def generate_images(prompt, num_inference_steps, guidance_scale):
# num_inference_steps to number
try:
infer_steps = int(num_inference_steps)
except:
infer_steps = 50
# guidance_scale to number
try:
gui_scale = float(guidance_scale)
except:
gui_scale = 7.5
image = pipe(prompt, num_inference_steps=infer_steps,guidance_scale=gui_scale).images[0]
# image = os.getcwd()
return image
with gr.Blocks() as demo:
gr.Markdown(
"""
# 诺艾尔生成器
基于 Linaqruf/anything-v3.0 训练,采用DreamBooth的技术并使用a photo of Neolle文本进行了训练。用于微调的图片共10张,均为原神角色诺艾尔,batch_size取1,学习率是5e-6,共训练1000步。
Hugging face的CPU环境num_inference_steps=50时,大约需要运行1200s。
如果推理结果包含色情内容,会返回一张纯黑图片~ 如果出现纯黑图片请重新运行
欢迎大家从 https://huggingface.co/Liyulingyue/Neolle_Face_Generator 下载模型到本地运行, 20s即可出图, 该链接包含运行示例代码~
## 输入参数如下:
- prompt:提示语
- num_inference_steps: 推理轮次,越高越耗时,能够提高画作结果的精细程度,建议取值50,更高会需要消耗更多的时间,但效果会更好。
- guidance_scale:训练图片的影响度,如果无法满足提示词描述的场景,可以降低该值,建议取值50。
## 推荐的提示词示例:
- Noelle with glasses
- Noelle with sunglasses
- Noelle with dark hair, beautiful eyes
- Noelle, 20 years old
- Noelle playing basketball
- Noelle with cat ears, blue hair
""")
gr.Interface(fn=generate_images,
inputs=["text","text","text"],
outputs="image")
if __name__ == "__main__":
demo.launch()