# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import DDPMWuerstchenScheduler, WuerstchenPriorPipeline from diffusers.pipelines.wuerstchen import WuerstchenPrior from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class WuerstchenPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = WuerstchenPriorPipeline params = ["prompt"] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config).eval() @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "c_in": 2, "c": 8, "depth": 2, "c_cond": 32, "c_r": 8, "nhead": 2, } model = WuerstchenPrior(**model_kwargs) return model.eval() def get_dummy_components(self): prior = self.dummy_prior text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer scheduler = DDPMWuerstchenScheduler() components = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def test_wuerstchen_prior(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.image_embeddings image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0] image_slice = image[0, 0, 0, -10:] image_from_tuple_slice = image_from_tuple[0, 0, 0, -10:] assert image.shape == (1, 2, 24, 24) expected_slice = np.array( [ -7172.837, -3438.855, -1093.312, 388.8835, -7471.467, -7998.1206, -5328.259, 218.00089, -2731.5745, -8056.734, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=2e-1, ) @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" test_mean_pixel_difference = False self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, test_mean_pixel_difference=test_mean_pixel_difference, ) @unittest.skip(reason="flaky for now") def test_float16_inference(self): super().test_float16_inference()