# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, MultiAdapter, PNDMScheduler, StableDiffusionAdapterPipeline, T2IAdapter, UNet2DConditionModel, ) from diffusers.utils import logging from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class AdapterTests: pipeline_class = StableDiffusionAdapterPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS def get_dummy_components(self, adapter_type): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) if adapter_type == "full_adapter" or adapter_type == "light_adapter": adapter = T2IAdapter( in_channels=3, channels=[32, 64], num_res_blocks=2, downscale_factor=2, adapter_type=adapter_type, ) elif adapter_type == "multi_adapter": adapter = MultiAdapter( [ T2IAdapter( in_channels=3, channels=[32, 64], num_res_blocks=2, downscale_factor=2, adapter_type="full_adapter", ), T2IAdapter( in_channels=3, channels=[32, 64], num_res_blocks=2, downscale_factor=2, adapter_type="full_adapter", ), ] ) else: raise ValueError( f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter', 'light_adapter', or 'multi_adapter''" ) components = { "adapter": adapter, "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0, num_images=1): if num_images == 1: image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) else: image = [floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) for _ in range(num_images)] if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class StableDiffusionFullAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): return super().get_dummy_components("full_adapter") def test_stable_diffusion_adapter_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionAdapterPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): return super().get_dummy_components("light_adapter") def test_stable_diffusion_adapter_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionAdapterPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 class StableDiffusionMultiAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): return super().get_dummy_components("multi_adapter") def get_dummy_inputs(self, device, seed=0): inputs = super().get_dummy_inputs(device, seed, num_images=2) inputs["adapter_conditioning_scale"] = [0.5, 0.5] return inputs def test_stable_diffusion_adapter_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionAdapterPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4902, 0.5539, 0.4317, 0.4682, 0.6190, 0.4351, 0.5018, 0.5046, 0.4772]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 def test_inference_batch_consistent( self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"] ): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs for batch_size in batch_sizes: batched_inputs = {} for name, value in inputs.items(): if name in self.batch_params: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 100 * "very long" elif name == "image": batched_images = [] for image in value: batched_images.append(batch_size * [image]) batched_inputs[name] = batched_images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size else: batched_inputs[name] = value for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] batched_inputs["output_type"] = "np" if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs) assert len(output[0]) == batch_size batched_inputs["output_type"] = "np" if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs)[0] assert output.shape[0] == batch_size logger.setLevel(level=diffusers.logging.WARNING) def test_num_images_per_prompt(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) batch_sizes = [1, 2] num_images_per_prompts = [1, 2] for batch_size in batch_sizes: for num_images_per_prompt in num_images_per_prompts: inputs = self.get_dummy_inputs(torch_device) for key in inputs.keys(): if key in self.batch_params: if key == "image": batched_images = [] for image in inputs[key]: batched_images.append(batch_size * [image]) inputs[key] = batched_images else: inputs[key] = batch_size * [inputs[key]] images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] assert images.shape[0] == batch_size * num_images_per_prompt def test_inference_batch_single_identical( self, batch_size=3, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False, expected_max_diff=2e-3, additional_params_copy_to_batched_inputs=["num_inference_steps"], ): if test_max_difference is None: # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems # make sure that batched and non-batched is identical test_max_difference = torch_device != "mps" if test_mean_pixel_difference is None: # TODO same as above test_mean_pixel_difference = torch_device != "mps" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs batched_inputs = {} batch_size = batch_size for name, value in inputs.items(): if name in self.batch_params: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 100 * "very long" elif name == "image": batched_images = [] for image in value: batched_images.append(batch_size * [image]) batched_inputs[name] = batched_images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size elif name == "generator": batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] else: batched_inputs[name] = value for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] if self.pipeline_class.__name__ != "DanceDiffusionPipeline": batched_inputs["output_type"] = "np" output_batch = pipe(**batched_inputs) assert output_batch[0].shape[0] == batch_size inputs["generator"] = self.get_generator(0) output = pipe(**inputs) logger.setLevel(level=diffusers.logging.WARNING) if test_max_difference: if relax_max_difference: # Taking the median of the largest differences # is resilient to outliers diff = np.abs(output_batch[0][0] - output[0][0]) diff = diff.flatten() diff.sort() max_diff = np.median(diff[-5:]) else: max_diff = np.abs(output_batch[0][0] - output[0][0]).max() assert max_diff < expected_max_diff if test_mean_pixel_difference: assert_mean_pixel_difference(output_batch[0][0], output[0][0]) @slow @require_torch_gpu class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_adapter(self): test_cases = [ ( "TencentARC/t2iadapter_color_sd14v1", "CompVis/stable-diffusion-v1-4", "snail", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy", ), ( "TencentARC/t2iadapter_depth_sd14v1", "CompVis/stable-diffusion-v1-4", "desk", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy", ), ( "TencentARC/t2iadapter_depth_sd15v2", "runwayml/stable-diffusion-v1-5", "desk", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy", ), ( "TencentARC/t2iadapter_keypose_sd14v1", "CompVis/stable-diffusion-v1-4", "person", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy", ), ( "TencentARC/t2iadapter_openpose_sd14v1", "CompVis/stable-diffusion-v1-4", "person", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy", ), ( "TencentARC/t2iadapter_seg_sd14v1", "CompVis/stable-diffusion-v1-4", "motorcycle", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy", ), ( "TencentARC/t2iadapter_zoedepth_sd15v1", "runwayml/stable-diffusion-v1-5", "motorcycle", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png", 3, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy", ), ( "TencentARC/t2iadapter_canny_sd14v1", "CompVis/stable-diffusion-v1-4", "toy", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy", ), ( "TencentARC/t2iadapter_canny_sd15v2", "runwayml/stable-diffusion-v1-5", "toy", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy", ), ( "TencentARC/t2iadapter_sketch_sd14v1", "CompVis/stable-diffusion-v1-4", "cat", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy", ), ( "TencentARC/t2iadapter_sketch_sd15v2", "runwayml/stable-diffusion-v1-5", "cat", "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", 1, "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy", ), ] for adapter_model, sd_model, prompt, image_url, input_channels, out_url in test_cases: image = load_image(image_url) expected_out = load_numpy(out_url) if input_channels == 1: image = image.convert("L") adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() generator = torch.Generator(device="cpu").manual_seed(0) out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images self.assertTrue(np.allclose(out, expected_out)) def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1") pipe = StableDiffusionAdapterPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png" ) pipe(prompt="foo", image=image, num_inference_steps=2) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 5 * 10**9