+
+
+
+
+
+ +🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). + +🤗 Diffusers offers three core components: + +- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code. +- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality. +- Pretrained [models](https://huggingface.co/docs/diffusers/api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. + +## Installation + +We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation. + +### PyTorch + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[torch] +``` + +With `conda` (maintained by the community): + +```sh +conda install -c conda-forge diffusers +``` + +### Flax + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[flax] +``` + +### Apple Silicon (M1/M2) support + +Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide. + +## Quickstart + +Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 4000+ checkpoints): + +```python +from diffusers import DiffusionPipeline +import torch + +pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) +pipeline.to("cuda") +pipeline("An image of a squirrel in Picasso style").images[0] +``` + +You can also dig into the models and schedulers toolbox to build your own diffusion system: + +```python +from diffusers import DDPMScheduler, UNet2DModel +from PIL import Image +import torch +import numpy as np + +scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") +model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") +scheduler.set_timesteps(50) + +sample_size = model.config.sample_size +noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda") +input = noise + +for t in scheduler.timesteps: + with torch.no_grad(): + noisy_residual = model(input, t).sample + prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample + input = prev_noisy_sample + +image = (input / 2 + 0.5).clamp(0, 1) +image = image.cpu().permute(0, 2, 3, 1).numpy()[0] +image = Image.fromarray((image * 255).round().astype("uint8")) +image +``` + +Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today! + +## How to navigate the documentation + +| **Documentation** | **What can I learn?** | +|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | +| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | +| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | +| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. | +| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. | +## Contribution + +We ❤️ contributions from the open-source community! +If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). +You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. +- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute +- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines +- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) + +Also, say 👋 in our public Discord channel+ Pipeline + | ++ Supported tasks + | ++ Space + | + +
---|---|---|
+ StableDiffusion + | +text-to-image | +|
+ StableDiffusionImg2Img + | +image-to-image | +|
+ StableDiffusionInpaint + | +inpainting | +|
+ StableDiffusionDepth2Img + | +depth-to-image | +|
+ StableDiffusionImageVariation + | +image variation | +|
+ StableDiffusionPipelineSafe + | +filtered text-to-image | +|
+ StableDiffusion2 + | +text-to-image, inpainting, depth-to-image, super-resolution | +|
+ StableDiffusionXL + | +text-to-image, image-to-image | +|
+ StableDiffusionLatentUpscale + | +super-resolution | +|
+ StableDiffusionUpscale + | +super-resolution | +|
+ StableDiffusionLDM3D + | +text-to-rgb, text-to-depth | +
+ ![]() |
+ + ![]() |
+
+ ![]() |
+
+
+ Real images.
+
+
+ Fake images.
+
+
+
+
+
Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using 🤗 Diffusers for the first time!
+ +Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.
+ +Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.
+ +Technical descriptions of how 🤗 Diffusers classes and methods work.
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
결과물을 생성하고, 나만의 diffusion 시스템을 구축하고, 확산 모델을 훈련하는 데 필요한 기본 기술을 배워보세요. 🤗 Diffusers를 처음 사용하는 경우 여기에서 시작하는 것이 좋습니다!
+ +파이프라인, 모델, 스케줄러를 로드하는 데 도움이 되는 실용적인 가이드입니다. 또한 특정 작업에 파이프라인을 사용하고, 출력 생성 방식을 제어하고, 추론 속도에 맞게 최적화하고, 다양한 학습 기법을 사용하는 방법도 배울 수 있습니다.
+ +라이브러리가 왜 이런 방식으로 설계되었는지 이해하고, 라이브러리 이용에 대한 윤리적 가이드라인과 안전 구현에 대해 자세히 알아보세요.
+ +🤗 Diffusers 클래스 및 메서드의 작동 방식에 대한 기술 설명.
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using 🤗 Diffusers for the first time!
+ +Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.
+ +Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.
+ +Technical descriptions of how 🤗 Diffusers classes and methods work.
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+