pablo commited on
Commit
22a4ea9
·
1 Parent(s): b9d1cce

3d visualization

Browse files
Files changed (3) hide show
  1. app.py +144 -64
  2. mesh.py +52 -0
  3. requirements.txt +2 -1
app.py CHANGED
@@ -2,13 +2,17 @@ import gradio as gr
2
  import torch
3
 
4
  from diffuserslocal.src.diffusers import UNet2DConditionModel
5
- import diffuserslocal.src.diffusers as diffusers
6
  from share_btn import community_icon_html, loading_icon_html, share_js
7
  from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
8
  from PIL import Image
9
  import numpy as np
10
  import cv2
11
 
 
 
 
 
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
14
  # Inpainting pipeline
@@ -64,7 +68,7 @@ def read_content(file_path: str) -> str:
64
 
65
  return content
66
 
67
- def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
68
  if negative_prompt == "":
69
  negative_prompt = None
70
  scheduler_class_name = scheduler.split("-")[0]
@@ -83,13 +87,7 @@ def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, step
83
  depth_image = depth_image.astype("int32")
84
  depth_image = Image.fromarray(depth_image)
85
 
86
- init_image = Image.fromarray(init_image.astype("uint8"))
87
- #init_image.save("temp_image.jpg")
88
-
89
- #depth_image.save("temp_depth.jpg")
90
- #scheduler = getattr(diffusers, scheduler_class_name)
91
- #pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
92
-
93
 
94
  depth_image = depth_image.resize((512, 512))
95
 
@@ -142,65 +140,147 @@ div#share-btn-container > div {flex-direction: row;background: black;align-items
142
  '''
143
 
144
  image_blocks = gr.Blocks(css=css, elem_id="total-container")
145
- with image_blocks as demo:
146
- gr.HTML(read_content("header.html"))
147
  with gr.Row():
148
- with gr.Column():
149
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
150
- depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
151
-
152
- with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
153
- with gr.Row():
154
- prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
155
- btn = gr.Button("Inpaint!", elem_id="run_button")
156
-
157
- with gr.Accordion(label="Advanced Settings", open=False):
158
- with gr.Row(mobile_collapse=False, equal_height=True):
159
- guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
160
- steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
161
- strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
162
- negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
163
- with gr.Row(mobile_collapse=False, equal_height=True):
164
- schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
165
- scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
166
-
167
- with gr.Column():
168
- image_out = gr.Image(label="Output", elem_id="output-img", height=400)
169
- depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)
170
-
171
- with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
172
- community_icon = gr.HTML(community_icon_html)
173
- loading_icon = gr.HTML(loading_icon_html)
174
- share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
175
-
176
- btn.click(fn=predict, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
177
- prompt.submit(fn=predict, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
178
  share_button.click(None, [], [], _js=share_js)
179
 
180
  gr.Examples(
181
- examples=[
182
- ["./imgs/aaa (8).png"],
183
- ["./imgs/download (1).jpeg"],
184
- ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
185
- ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
186
- ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
187
- ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
188
- ["./imgs/canam-electric-motorcycles-scaled.jpg"],
189
- ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
190
- ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
191
- ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
192
- ],
193
- fn=predict,
194
- inputs=[image],
195
- cache_examples=False,
196
- )
197
- gr.HTML(
198
- """
199
- <div class="footer">
200
- <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
201
- </p>
202
- </div>
203
- """
204
  )
205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
  image_blocks.queue(max_size=25).launch()
 
2
  import torch
3
 
4
  from diffuserslocal.src.diffusers import UNet2DConditionModel
 
5
  from share_btn import community_icon_html, loading_icon_html, share_js
6
  from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
7
  from PIL import Image
8
  import numpy as np
9
  import cv2
10
 
11
+ from functools import partial
12
+ import tempfile
13
+
14
+ from mesh import get_mesh
15
+
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
 
18
  # Inpainting pipeline
 
68
 
69
  return content
70
 
71
+ def predict_images(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
72
  if negative_prompt == "":
73
  negative_prompt = None
74
  scheduler_class_name = scheduler.split("-")[0]
 
87
  depth_image = depth_image.astype("int32")
88
  depth_image = Image.fromarray(depth_image)
89
 
90
+ init_image = Image.fromarray(init_image.astype("uint8"))
 
 
 
 
 
 
91
 
92
  depth_image = depth_image.resize((512, 512))
93
 
 
140
  '''
141
 
142
  image_blocks = gr.Blocks(css=css, elem_id="total-container")
143
+
144
+ def create_vis_demo():
145
  with gr.Row():
146
+ with gr.Column():
147
+ image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
148
+ depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
149
+
150
+ with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
151
+ with gr.Row():
152
+ prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
153
+ btn = gr.Button("Inpaint!", elem_id="run_button")
154
+
155
+ with gr.Accordion(label="Advanced Settings", open=False):
156
+ with gr.Row(mobile_collapse=False, equal_height=True):
157
+ guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
158
+ steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
159
+ strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
160
+ negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
161
+ with gr.Row(mobile_collapse=False, equal_height=True):
162
+ schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
163
+ scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
164
+
165
+ with gr.Column():
166
+ image_out = gr.Image(label="Output", elem_id="output-img", height=400)
167
+ depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)
168
+
169
+ with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
170
+ community_icon = gr.HTML(community_icon_html)
171
+ loading_icon = gr.HTML(loading_icon_html)
172
+ share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
173
+
174
+ btn.click(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
175
+ prompt.submit(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
176
  share_button.click(None, [], [], _js=share_js)
177
 
178
  gr.Examples(
179
+ examples=[
180
+ ["./imgs/aaa (8).png"],
181
+ ["./imgs/download (1).jpeg"],
182
+ ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
183
+ ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
184
+ ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
185
+ ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
186
+ ["./imgs/canam-electric-motorcycles-scaled.jpg"],
187
+ ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
188
+ ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
189
+ ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
190
+ ],
191
+ fn=predict_images,
192
+ inputs=[image],
193
+ cache_examples=False,
 
 
 
 
 
 
 
 
194
  )
195
 
196
+
197
+ def predict_images_3d(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler", keep_edges=False):
198
+ if negative_prompt == "":
199
+ negative_prompt = None
200
+ scheduler_class_name = scheduler.split("-")[0]
201
+
202
+ init_image = cv2.resize(dict["image"], (512, 512))
203
+
204
+ mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
205
+ mask.save("temp_mask.jpg")
206
+
207
+ if (depth is None):
208
+ depth_image = estimate_depth(init_image)
209
+
210
+ else:
211
+ d_i = depth[:,:,0]
212
+ depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
213
+ depth_image = depth_image.astype("int32")
214
+ depth_image = Image.fromarray(depth_image)
215
+
216
+ init_image = Image.fromarray(init_image.astype("uint8"))
217
+
218
+ depth_image = depth_image.resize((512, 512))
219
+
220
+ output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
221
+
222
+ depth_out = np.array(output.depth[0])
223
+
224
+ output_depth_vis = (depth_out - np.min(depth_out)) / (np.max(depth_out) - np.min(depth_out)) * 255
225
+ output_depth_vis = output_depth_vis.astype("uint8")
226
+
227
+ #init_image
228
+ #depth_image
229
+ output_depth = Image.fromarray(output_depth_vis)
230
+ output_image = output.rgb[0]
231
+
232
+ output_mesh = get_mesh(output_depth_vis, output_image, keep_edges=keep_edges)
233
+ input_mesh = get_mesh(np.array(depth_image),init_image, keep_edges=keep_edges)
234
+
235
+ return input_mesh, output_mesh
236
+
237
+ def create_3d_demo(model):
238
+
239
+ gr.Markdown("### Image to 3D mesh")
240
+
241
+ with gr.Column():
242
+ image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
243
+ depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
244
+ checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
245
+
246
+ with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
247
+ with gr.Row():
248
+ prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
249
+ btn = gr.Button("Inpaint!", elem_id="run_button")
250
+
251
+ with gr.Accordion(label="Advanced Settings", open=False):
252
+ with gr.Row(mobile_collapse=False, equal_height=True):
253
+ guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
254
+ steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
255
+ strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
256
+ negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
257
+ with gr.Row(mobile_collapse=False, equal_height=True):
258
+ schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
259
+ scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
260
+
261
+ with gr.Column():
262
+ with gr.row():
263
+ result_og = gr.Model3D(label="original 3d reconstruction", clear_color=[
264
+ 1.0, 1.0, 1.0, 1.0])
265
+
266
+ result_new = gr.Model3D(label="inpainted 3d reconstruction", clear_color=[
267
+ 1.0, 1.0, 1.0, 1.0])
268
+
269
+
270
+ submit = gr.Button("Submit")
271
+ submit.click(fn=predict_images_3d, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler, checkbox], outputs=[image_out, depth_out, share_btn_container], api_name='run')
272
+ examples = gr.Examples(examples=["examples/aerial_beach.jpeg", "examples/mountains.jpeg", "examples/person_1.jpeg", "examples/ancient-carved.jpeg"],
273
+ inputs=[image])
274
+
275
+
276
+
277
+ with image_blocks as demo:
278
+ with gr.Tab("Image", default=True):
279
+ create_vis_demo()
280
+ with gr.Tab("3D"):
281
+ create_3d_demo()
282
+
283
+ gr.HTML(read_content("header.html"))
284
+
285
+
286
  image_blocks.queue(max_size=25).launch()
mesh.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import trimesh
4
+ from geometry import depth_to_points, create_triangles
5
+ from functools import partial
6
+ import tempfile
7
+
8
+
9
+ def depth_edges_mask(depth):
10
+ """Returns a mask of edges in the depth map.
11
+ Args:
12
+ depth: 2D numpy array of shape (H, W) with dtype float32.
13
+ Returns:
14
+ mask: 2D numpy array of shape (H, W) with dtype bool.
15
+ """
16
+ # Compute the x and y gradients of the depth map.
17
+ depth_dx, depth_dy = np.gradient(depth)
18
+ # Compute the gradient magnitude.
19
+ depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
20
+ # Compute the edge mask.
21
+ mask = depth_grad > 0.05
22
+ return mask
23
+
24
+
25
+ def predict_depth(model, image):
26
+ depth = model.infer_pil(image)
27
+ return depth
28
+
29
+ def get_mesh(depth, image, keep_edges=False):
30
+ # limit the size of the input image
31
+ pts3d = depth_to_points(depth[None])
32
+ pts3d = pts3d.reshape(-1, 3)
33
+
34
+ # Create a trimesh mesh from the points
35
+ # Each pixel is connected to its 4 neighbors
36
+ # colors are the RGB values of the image
37
+
38
+ verts = pts3d.reshape(-1, 3)
39
+ image = np.array(image)
40
+ if keep_edges:
41
+ triangles = create_triangles(image.shape[0], image.shape[1])
42
+ else:
43
+ triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
44
+ colors = image.reshape(-1, 3)
45
+ mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
46
+
47
+ # Save as glb
48
+ glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
49
+ glb_path = glb_file.name
50
+ mesh.export(glb_path)
51
+ return glb_path
52
+
requirements.txt CHANGED
@@ -9,4 +9,5 @@ numpy
9
  matplotlib
10
  uuid
11
  opencv-python
12
- timm
 
 
9
  matplotlib
10
  uuid
11
  opencv-python
12
+ timm
13
+ trimesh