pablo
add diffusers fork
a63d2a4
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...schedulers import DDPMWuerstchenScheduler
from ...utils import logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .modeling_paella_vq_model import PaellaVQModel
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import WuerstchenPriorPipeline, WuerstchenDecoderPipeline
>>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(
... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16
... ).to("cuda")
>>> gen_pipe = WuerstchenDecoderPipeline.from_pretrain("warp-ai/wuerstchen", torch_dtype=torch.float16).to(
... "cuda"
... )
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
>>> prior_output = pipe(prompt)
>>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt)
```
"""
class WuerstchenDecoderPipeline(DiffusionPipeline):
"""
Pipeline for generating images from the Wuerstchen model.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
tokenizer (`CLIPTokenizer`):
The CLIP tokenizer.
text_encoder (`CLIPTextModel`):
The CLIP text encoder.
decoder ([`WuerstchenDiffNeXt`]):
The WuerstchenDiffNeXt unet decoder.
vqgan ([`PaellaVQModel`]):
The VQGAN model.
scheduler ([`DDPMWuerstchenScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
latent_dim_scale (float, `optional`, defaults to 10.67):
Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are
height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and
width=int(24*10.67)=256 in order to match the training conditions.
"""
model_cpu_offload_seq = "text_encoder->decoder->vqgan"
def __init__(
self,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
decoder: WuerstchenDiffNeXt,
scheduler: DDPMWuerstchenScheduler,
vqgan: PaellaVQModel,
latent_dim_scale: float = 10.67,
) -> None:
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
decoder=decoder,
scheduler=scheduler,
vqgan=vqgan,
)
self.register_to_config(latent_dim_scale=latent_dim_scale)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
text_encoder_hidden_states = text_encoder_output.last_hidden_state
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
uncond_text_encoder_hidden_states = None
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds_text_encoder_output = self.text_encoder(
uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)
)
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
return text_encoder_hidden_states, uncond_text_encoder_hidden_states
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image_embeddings: Union[torch.FloatTensor, List[torch.FloatTensor]],
prompt: Union[str, List[str]] = None,
num_inference_steps: int = 12,
timesteps: Optional[List[float]] = None,
guidance_scale: float = 0.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
image_embedding (`torch.FloatTensor` or `List[torch.FloatTensor]`):
Image Embeddings either extracted from an image or generated by a Prior Model.
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
num_inference_steps (`int`, *optional*, defaults to 30):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
linked to the text `prompt`, usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `decoder_guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True,
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
embeddings.
"""
# 0. Define commonly used variables
device = self._execution_device
dtype = self.decoder.dtype
do_classifier_free_guidance = guidance_scale > 1.0
# 1. Check inputs. Raise error if not correct
if not isinstance(prompt, list):
if isinstance(prompt, str):
prompt = [prompt]
else:
raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.")
if do_classifier_free_guidance:
if negative_prompt is not None and not isinstance(negative_prompt, list):
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
else:
raise TypeError(
f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}."
)
if isinstance(image_embeddings, list):
image_embeddings = torch.cat(image_embeddings, dim=0)
if isinstance(image_embeddings, np.ndarray):
image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype)
if not isinstance(image_embeddings, torch.Tensor):
raise TypeError(
f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}."
)
if not isinstance(num_inference_steps, int):
raise TypeError(
f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\
In Case you want to provide explicit timesteps, please use the 'timesteps' argument."
)
# 2. Encode caption
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
image_embeddings.size(0) * num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
)
text_encoder_hidden_states = (
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
)
# 3. Determine latent shape of latents
latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale)
latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale)
latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width)
# 4. Prepare and set timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latents
latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler)
# 6. Run denoising loop
for t in self.progress_bar(timesteps[:-1]):
ratio = t.expand(latents.size(0)).to(dtype)
effnet = (
torch.cat([image_embeddings, torch.zeros_like(image_embeddings)])
if do_classifier_free_guidance
else image_embeddings
)
# 7. Denoise latents
predicted_latents = self.decoder(
torch.cat([latents] * 2) if do_classifier_free_guidance else latents,
r=torch.cat([ratio] * 2) if do_classifier_free_guidance else ratio,
effnet=effnet,
clip=text_encoder_hidden_states,
)
# 8. Check for classifier free guidance and apply it
if do_classifier_free_guidance:
predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2)
predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, guidance_scale)
# 9. Renoise latents to next timestep
latents = self.scheduler.step(
model_output=predicted_latents,
timestep=ratio,
sample=latents,
generator=generator,
).prev_sample
# 10. Scale and decode the image latents with vq-vae
latents = self.vqgan.config.scale_factor * latents
images = self.vqgan.decode(latents).sample.clamp(0, 1)
# Offload all models
self.maybe_free_model_hooks()
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `np` and `pil` are supported not output_type={output_type}")
if output_type == "np":
images = images.permute(0, 2, 3, 1).cpu().numpy()
elif output_type == "pil":
images = images.permute(0, 2, 3, 1).cpu().numpy()
images = self.numpy_to_pil(images)
if not return_dict:
return images
return ImagePipelineOutput(images)