File size: 22,417 Bytes
a63d2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    EulerDiscreteScheduler,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
)
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import floats_tensor, require_peft_backend, require_torch_gpu, slow


if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


@require_peft_backend
class PeftLoraLoaderMixinTests:
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
    unet_kwargs = None
    vae_kwargs = None

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(**self.unet_kwargs)
        scheduler = self.scheduler_cls(**self.scheduler_kwargs)
        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)
        text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
        tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        text_lora_config = LoraConfig(
            r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False
        )

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)

        if self.has_two_text_encoders:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
            }
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
            }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components, text_lora_config

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
        components, _, _ = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)

        _, _, inputs = self.get_dummy_inputs()
        output_no_lora = pipe(**inputs).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(
            not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
        )

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(
            not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
        )

        output_lora_scale = pipe(
            **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
        ).images
        self.assertTrue(
            not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
            "Lora + scale should change the output",
        )

        output_lora_0_scale = pipe(
            **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
        ).images
        self.assertTrue(
            np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
            "Lora + 0 scale should lead to same result as no LoRA",
        )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        pipe.fuse_lora()
        # Fusing should still keep the LoRA layers
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertFalse(
            np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        pipe.unload_lora_weights()
        # unloading should remove the LoRA layers
        self.assertFalse(
            self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
        )

        if self.has_two_text_encoders:
            self.assertFalse(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2"
            )

        ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(
            np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
            if self.has_two_text_encoders:
                text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname,
                    text_encoder_lora_layers=text_encoder_state_dict,
                    text_encoder_2_lora_layers=text_encoder_2_state_dict,
                    safe_serialization=False,
                )
            else:
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname,
                    text_encoder_lora_layers=text_encoder_state_dict,
                    safe_serialization=False,
                )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            pipe.unload_lora_weights()

            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

        images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        self.assertTrue(
            np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
            "Loading from saved checkpoints should give same results.",
        )

    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
        components, _, text_lora_config = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(self.torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
        self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

        pipe.text_encoder.add_adapter(text_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        if self.has_two_text_encoders:
            pipe.text_encoder_2.add_adapter(text_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
            )

        images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)

            pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
            pipe_from_pretrained.to(self.torch_device)

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
            "Lora not correctly set in text encoder",
        )

        if self.has_two_text_encoders:
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                "Lora not correctly set in text encoder 2",
            )

        images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images

        self.assertTrue(
            np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
            "Loading from saved checkpoints should give same results.",
        )


class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

    @slow
    @require_torch_gpu
    def test_integration_logits_with_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder 2",
        )

        prompt = "a red sks dog"

        images = pipe(
            prompt=prompt,
            num_inference_steps=15,
            cross_attention_kwargs={"scale": 0.5},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @slow
    @require_torch_gpu
    def test_integration_logits_no_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        prompt = "a red sks dog"

        images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images

        expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))


class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }