import os import random from dotenv import load_dotenv from pathlib import Path # Load environment variables env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) # API Keys HF_API_KEY = os.getenv('HF_API_KEY', '') # LLM Configuration LLM_MODEL = os.getenv('LLM_MODEL', 'distilgpt2') EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL', 'sentence-transformers/all-MiniLM-L6-v2') # Vector Database # Determine which vector DB path to use based on deployment environment if os.path.exists("/app/data/vector_db_1"): # We're in the Docker container, use one of the multiple DB paths vector_db_options = [ './data/vector_db_1', './data/vector_db_2', './data/vector_db_3', ] # Choose a random DB path to reduce collision probability VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', random.choice(vector_db_options)) else: # Local development, use the standard path VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', './data/vector_db') COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'personal_assistant') # Application Settings DEFAULT_TEMPERATURE = float(os.getenv('DEFAULT_TEMPERATURE', 0.7)) CHUNK_SIZE = int(os.getenv('CHUNK_SIZE', 512)) CHUNK_OVERLAP = int(os.getenv('CHUNK_OVERLAP', 128)) MAX_TOKENS = int(os.getenv('MAX_TOKENS', 256)) # Create a template .env file if it doesn't exist def create_env_example(): if not os.path.exists('.env.example'): with open('.env.example', 'w') as f: f.write("""# API Keys HF_API_KEY=your_huggingface_api_key_here # LLM Configuration LLM_MODEL=distilgpt2 # Use small model for Hugging Face Spaces EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 # Vector Database VECTOR_DB_PATH=./data/vector_db COLLECTION_NAME=personal_assistant # Application Settings DEFAULT_TEMPERATURE=0.7 CHUNK_SIZE=512 CHUNK_OVERLAP=128 MAX_TOKENS=256 """)