37-AN
commited on
Commit
·
9f0d171
1
Parent(s):
403ced7
Fix 403 error by using local models
Browse files- Dockerfile +13 -4
- app.py +40 -1
- app/config.py +23 -9
- app/core/memory.py +84 -19
- app/ui/streamlit_app.py +99 -35
Dockerfile
CHANGED
@@ -27,9 +27,12 @@ RUN mkdir -p /app/models && chmod 777 /app/models
|
|
27 |
# Copy the rest of the application
|
28 |
COPY . .
|
29 |
|
30 |
-
# Create necessary directories with proper permissions
|
31 |
-
RUN mkdir -p data/documents data/
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
# Set environment variables for cache locations
|
35 |
ENV TRANSFORMERS_CACHE=/app/models
|
@@ -51,8 +54,14 @@ ENV MAX_TOKENS=256
|
|
51 |
ENV CHUNK_SIZE=512
|
52 |
ENV CHUNK_OVERLAP=128
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Expose port for Hugging Face Spaces
|
55 |
EXPOSE 7860
|
56 |
|
57 |
# Run the Streamlit app on the correct port
|
58 |
-
CMD ["streamlit", "run", "app/ui/streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
|
|
27 |
# Copy the rest of the application
|
28 |
COPY . .
|
29 |
|
30 |
+
# Create necessary directories with proper permissions and unique vector_db folders
|
31 |
+
RUN mkdir -p data/documents && chmod -R 777 data/documents
|
32 |
+
RUN mkdir -p data/vector_db && chmod -R 777 data/vector_db
|
33 |
+
# Create multiple vector_db instances to avoid collisions
|
34 |
+
RUN mkdir -p data/vector_db_1 data/vector_db_2 data/vector_db_3 && \
|
35 |
+
chmod -R 777 data/vector_db_*
|
36 |
|
37 |
# Set environment variables for cache locations
|
38 |
ENV TRANSFORMERS_CACHE=/app/models
|
|
|
54 |
ENV CHUNK_SIZE=512
|
55 |
ENV CHUNK_OVERLAP=128
|
56 |
|
57 |
+
# Set server.maxMessageSize for Streamlit to handle large uploads
|
58 |
+
ENV STREAMLIT_SERVER_MAX_MESSAGE_SIZE=200
|
59 |
+
|
60 |
+
# Set shared memory settings to improve performance
|
61 |
+
ENV PYTHONHASHSEED=0
|
62 |
+
|
63 |
# Expose port for Hugging Face Spaces
|
64 |
EXPOSE 7860
|
65 |
|
66 |
# Run the Streamlit app on the correct port
|
67 |
+
CMD ["streamlit", "run", "app/ui/streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0", "--server.maxUploadSize=10"]
|
app.py
CHANGED
@@ -6,6 +6,20 @@ This file starts the Streamlit UI when deployed to Hugging Face Spaces.
|
|
6 |
import subprocess
|
7 |
import os
|
8 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Make sure the app directory is in the path
|
11 |
# Add the current directory to the path so that 'app' is recognized as a package
|
@@ -14,11 +28,36 @@ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
14 |
sys.path.append(os.path.abspath('.'))
|
15 |
|
16 |
# Create necessary directories
|
|
|
17 |
os.makedirs('data/documents', exist_ok=True)
|
18 |
os.makedirs('data/vector_db', exist_ok=True)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Set environment variable for Python path
|
21 |
os.environ['PYTHONPATH'] = os.path.abspath('.')
|
22 |
|
|
|
|
|
|
|
|
|
23 |
# Run the Streamlit app with specific port to match huggingface-space.yml
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import subprocess
|
7 |
import os
|
8 |
import sys
|
9 |
+
import time
|
10 |
+
import random
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
17 |
+
handlers=[
|
18 |
+
logging.StreamHandler()
|
19 |
+
]
|
20 |
+
)
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
|
24 |
# Make sure the app directory is in the path
|
25 |
# Add the current directory to the path so that 'app' is recognized as a package
|
|
|
28 |
sys.path.append(os.path.abspath('.'))
|
29 |
|
30 |
# Create necessary directories
|
31 |
+
logger.info("Creating necessary directories...")
|
32 |
os.makedirs('data/documents', exist_ok=True)
|
33 |
os.makedirs('data/vector_db', exist_ok=True)
|
34 |
|
35 |
+
# Create multiple vector database paths to help with concurrent access
|
36 |
+
for i in range(1, 4):
|
37 |
+
path = f'data/vector_db_{i}'
|
38 |
+
os.makedirs(path, exist_ok=True)
|
39 |
+
# Ensure directories have proper permissions
|
40 |
+
try:
|
41 |
+
os.chmod(path, 0o777)
|
42 |
+
except Exception as e:
|
43 |
+
logger.warning(f"Could not set permissions for {path}: {e}")
|
44 |
+
|
45 |
# Set environment variable for Python path
|
46 |
os.environ['PYTHONPATH'] = os.path.abspath('.')
|
47 |
|
48 |
+
# Add a small delay to ensure directory creation is complete
|
49 |
+
logger.info("Starting application...")
|
50 |
+
time.sleep(1)
|
51 |
+
|
52 |
# Run the Streamlit app with specific port to match huggingface-space.yml
|
53 |
+
# Add server.maxMessageSize to handle larger files and messages
|
54 |
+
cmd = [
|
55 |
+
"streamlit", "run", "app/ui/streamlit_app.py",
|
56 |
+
"--server.port=7860",
|
57 |
+
"--server.address=0.0.0.0",
|
58 |
+
"--server.maxUploadSize=10",
|
59 |
+
"--server.maxMessageSize=200"
|
60 |
+
]
|
61 |
+
|
62 |
+
logger.info(f"Running command: {' '.join(cmd)}")
|
63 |
+
subprocess.run(cmd)
|
app/config.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from pathlib import Path
|
4 |
|
@@ -10,18 +11,31 @@ load_dotenv(dotenv_path=env_path)
|
|
10 |
HF_API_KEY = os.getenv('HF_API_KEY', '')
|
11 |
|
12 |
# LLM Configuration
|
13 |
-
LLM_MODEL = os.getenv('LLM_MODEL', '
|
14 |
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL', 'sentence-transformers/all-MiniLM-L6-v2')
|
15 |
|
16 |
# Vector Database
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'personal_assistant')
|
19 |
|
20 |
# Application Settings
|
21 |
DEFAULT_TEMPERATURE = float(os.getenv('DEFAULT_TEMPERATURE', 0.7))
|
22 |
-
CHUNK_SIZE = int(os.getenv('CHUNK_SIZE',
|
23 |
-
CHUNK_OVERLAP = int(os.getenv('CHUNK_OVERLAP',
|
24 |
-
MAX_TOKENS = int(os.getenv('MAX_TOKENS',
|
25 |
|
26 |
# Create a template .env file if it doesn't exist
|
27 |
def create_env_example():
|
@@ -31,7 +45,7 @@ def create_env_example():
|
|
31 |
HF_API_KEY=your_huggingface_api_key_here
|
32 |
|
33 |
# LLM Configuration
|
34 |
-
LLM_MODEL=
|
35 |
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
36 |
|
37 |
# Vector Database
|
@@ -40,7 +54,7 @@ COLLECTION_NAME=personal_assistant
|
|
40 |
|
41 |
# Application Settings
|
42 |
DEFAULT_TEMPERATURE=0.7
|
43 |
-
CHUNK_SIZE=
|
44 |
-
CHUNK_OVERLAP=
|
45 |
-
MAX_TOKENS=
|
46 |
""")
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
from dotenv import load_dotenv
|
4 |
from pathlib import Path
|
5 |
|
|
|
11 |
HF_API_KEY = os.getenv('HF_API_KEY', '')
|
12 |
|
13 |
# LLM Configuration
|
14 |
+
LLM_MODEL = os.getenv('LLM_MODEL', 'distilgpt2')
|
15 |
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL', 'sentence-transformers/all-MiniLM-L6-v2')
|
16 |
|
17 |
# Vector Database
|
18 |
+
# Determine which vector DB path to use based on deployment environment
|
19 |
+
if os.path.exists("/app/data/vector_db_1"):
|
20 |
+
# We're in the Docker container, use one of the multiple DB paths
|
21 |
+
vector_db_options = [
|
22 |
+
'./data/vector_db_1',
|
23 |
+
'./data/vector_db_2',
|
24 |
+
'./data/vector_db_3',
|
25 |
+
]
|
26 |
+
# Choose a random DB path to reduce collision probability
|
27 |
+
VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', random.choice(vector_db_options))
|
28 |
+
else:
|
29 |
+
# Local development, use the standard path
|
30 |
+
VECTOR_DB_PATH = os.getenv('VECTOR_DB_PATH', './data/vector_db')
|
31 |
+
|
32 |
COLLECTION_NAME = os.getenv('COLLECTION_NAME', 'personal_assistant')
|
33 |
|
34 |
# Application Settings
|
35 |
DEFAULT_TEMPERATURE = float(os.getenv('DEFAULT_TEMPERATURE', 0.7))
|
36 |
+
CHUNK_SIZE = int(os.getenv('CHUNK_SIZE', 512))
|
37 |
+
CHUNK_OVERLAP = int(os.getenv('CHUNK_OVERLAP', 128))
|
38 |
+
MAX_TOKENS = int(os.getenv('MAX_TOKENS', 256))
|
39 |
|
40 |
# Create a template .env file if it doesn't exist
|
41 |
def create_env_example():
|
|
|
45 |
HF_API_KEY=your_huggingface_api_key_here
|
46 |
|
47 |
# LLM Configuration
|
48 |
+
LLM_MODEL=distilgpt2 # Use small model for Hugging Face Spaces
|
49 |
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
50 |
|
51 |
# Vector Database
|
|
|
54 |
|
55 |
# Application Settings
|
56 |
DEFAULT_TEMPERATURE=0.7
|
57 |
+
CHUNK_SIZE=512
|
58 |
+
CHUNK_OVERLAP=128
|
59 |
+
MAX_TOKENS=256
|
60 |
""")
|
app/core/memory.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
|
|
3 |
from langchain.vectorstores import Qdrant
|
4 |
from langchain.chains import ConversationalRetrievalChain
|
5 |
from langchain.memory import ConversationBufferMemory
|
6 |
from qdrant_client import QdrantClient
|
7 |
from qdrant_client.models import Distance, VectorParams
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Add project root to path for imports
|
10 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
11 |
from app.config import VECTOR_DB_PATH, COLLECTION_NAME
|
@@ -26,29 +33,79 @@ class MemoryManager:
|
|
26 |
)
|
27 |
|
28 |
def _init_qdrant_client(self):
|
29 |
-
"""Initialize the Qdrant client."""
|
|
|
30 |
os.makedirs(VECTOR_DB_PATH, exist_ok=True)
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def _init_vector_store(self):
|
34 |
"""Initialize the vector store."""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
collection_name=COLLECTION_NAME,
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
-
|
47 |
-
return Qdrant(
|
48 |
-
client=self.client,
|
49 |
-
collection_name=COLLECTION_NAME,
|
50 |
-
embeddings=self.embeddings
|
51 |
-
)
|
52 |
|
53 |
def get_retriever(self):
|
54 |
"""Get the retriever for RAG."""
|
@@ -69,8 +126,16 @@ class MemoryManager:
|
|
69 |
|
70 |
def add_texts(self, texts, metadatas=None):
|
71 |
"""Add texts to the vector store."""
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def similarity_search(self, query, k=5):
|
75 |
"""Perform a similarity search."""
|
76 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import logging
|
6 |
from langchain.vectorstores import Qdrant
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
from qdrant_client import QdrantClient
|
10 |
from qdrant_client.models import Distance, VectorParams
|
11 |
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
# Add project root to path for imports
|
17 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
18 |
from app.config import VECTOR_DB_PATH, COLLECTION_NAME
|
|
|
33 |
)
|
34 |
|
35 |
def _init_qdrant_client(self):
|
36 |
+
"""Initialize the Qdrant client with retry logic for concurrent access issues."""
|
37 |
+
# Create directory if it doesn't exist
|
38 |
os.makedirs(VECTOR_DB_PATH, exist_ok=True)
|
39 |
+
|
40 |
+
# Add a small random delay to reduce chance of concurrent access
|
41 |
+
time.sleep(random.uniform(0.1, 0.5))
|
42 |
+
|
43 |
+
# Generate a unique path for this instance to avoid collision
|
44 |
+
instance_id = str(random.randint(10000, 99999))
|
45 |
+
unique_path = os.path.join(VECTOR_DB_PATH, f"instance_{instance_id}")
|
46 |
+
|
47 |
+
max_retries = 3
|
48 |
+
retry_count = 0
|
49 |
+
|
50 |
+
while retry_count < max_retries:
|
51 |
+
try:
|
52 |
+
logger.info(f"Attempting to initialize Qdrant client (attempt {retry_count+1}/{max_retries})")
|
53 |
+
# Try to use the unique path first
|
54 |
+
try:
|
55 |
+
os.makedirs(unique_path, exist_ok=True)
|
56 |
+
return QdrantClient(path=unique_path)
|
57 |
+
except Exception as e:
|
58 |
+
logger.warning(f"Could not use unique path {unique_path}: {e}")
|
59 |
+
|
60 |
+
# Try the main path as fallback
|
61 |
+
return QdrantClient(path=VECTOR_DB_PATH)
|
62 |
+
|
63 |
+
except RuntimeError as e:
|
64 |
+
if "already accessed by another instance" in str(e):
|
65 |
+
retry_count += 1
|
66 |
+
wait_time = random.uniform(0.5, 2.0) * retry_count
|
67 |
+
logger.warning(f"Qdrant concurrent access detected. Retrying in {wait_time:.2f} seconds...")
|
68 |
+
time.sleep(wait_time)
|
69 |
+
else:
|
70 |
+
# Different error, don't retry
|
71 |
+
raise
|
72 |
+
|
73 |
+
# If all retries failed, try to use in-memory storage as last resort
|
74 |
+
logger.warning("All Qdrant client initialization attempts failed. Using in-memory mode.")
|
75 |
+
return QdrantClient(":memory:")
|
76 |
|
77 |
def _init_vector_store(self):
|
78 |
"""Initialize the vector store."""
|
79 |
+
try:
|
80 |
+
collections = self.client.get_collections().collections
|
81 |
+
collection_names = [collection.name for collection in collections]
|
82 |
+
|
83 |
+
# Get vector dimension from the embedding model
|
84 |
+
vector_size = len(self.embeddings.embed_query("test"))
|
85 |
+
|
86 |
+
if COLLECTION_NAME not in collection_names:
|
87 |
+
# Create the collection with appropriate settings
|
88 |
+
self.client.create_collection(
|
89 |
+
collection_name=COLLECTION_NAME,
|
90 |
+
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE),
|
91 |
+
)
|
92 |
+
logger.info(f"Created new collection: {COLLECTION_NAME}")
|
93 |
+
|
94 |
+
return Qdrant(
|
95 |
+
client=self.client,
|
96 |
collection_name=COLLECTION_NAME,
|
97 |
+
embeddings=self.embeddings
|
98 |
+
)
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"Error initializing vector store: {e}")
|
101 |
+
# Create a simple in-memory fallback
|
102 |
+
logger.warning("Using in-memory vector store as fallback.")
|
103 |
+
return Qdrant.from_texts(
|
104 |
+
["Hello, I am your AI assistant."],
|
105 |
+
self.embeddings,
|
106 |
+
location=":memory:",
|
107 |
+
collection_name=COLLECTION_NAME
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
def get_retriever(self):
|
111 |
"""Get the retriever for RAG."""
|
|
|
126 |
|
127 |
def add_texts(self, texts, metadatas=None):
|
128 |
"""Add texts to the vector store."""
|
129 |
+
try:
|
130 |
+
return self.vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Error adding texts to vector store: {e}")
|
133 |
+
return ["error-id-" + str(random.randint(10000, 99999))]
|
134 |
|
135 |
def similarity_search(self, query, k=5):
|
136 |
"""Perform a similarity search."""
|
137 |
+
try:
|
138 |
+
return self.vectorstore.similarity_search(query, k=k)
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error during similarity search: {e}")
|
141 |
+
return []
|
app/ui/streamlit_app.py
CHANGED
@@ -4,6 +4,12 @@ import sys
|
|
4 |
import tempfile
|
5 |
from datetime import datetime
|
6 |
from typing import List, Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Add project root to path for imports
|
9 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
@@ -29,15 +35,50 @@ st.set_page_config(
|
|
29 |
layout="wide"
|
30 |
)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Initialize session state variables
|
33 |
if "messages" not in st.session_state:
|
34 |
st.session_state.messages = []
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
if "document_processor" not in st.session_state:
|
40 |
-
st.session_state.document_processor = DocumentProcessor(st.session_state.agent.memory_manager)
|
41 |
|
42 |
# App title
|
43 |
st.title("🤗 Personal AI Assistant (Hugging Face)")
|
@@ -64,7 +105,7 @@ with st.sidebar:
|
|
64 |
f.write(uploaded_file.getvalue())
|
65 |
|
66 |
# Ingest the document
|
67 |
-
|
68 |
|
69 |
# Clean up the temporary file
|
70 |
os.unlink(tmp_path)
|
@@ -87,7 +128,7 @@ with st.sidebar:
|
|
87 |
}
|
88 |
|
89 |
# Ingest the text
|
90 |
-
|
91 |
|
92 |
st.success("Text added to knowledge base successfully!")
|
93 |
except Exception as e:
|
@@ -139,34 +180,57 @@ if prompt := st.chat_input("Ask a question..."):
|
|
139 |
# Generate response
|
140 |
with st.chat_message("assistant"):
|
141 |
with st.spinner("Thinking..."):
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
"
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
# Add a footer
|
172 |
st.markdown("---")
|
|
|
4 |
import tempfile
|
5 |
from datetime import datetime
|
6 |
from typing import List, Dict, Any
|
7 |
+
import time
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Add project root to path for imports
|
15 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
35 |
layout="wide"
|
36 |
)
|
37 |
|
38 |
+
# Function to initialize the agent safely
|
39 |
+
@st.cache_resource
|
40 |
+
def get_agent():
|
41 |
+
logger.info("Initializing AssistantAgent (should only happen once)")
|
42 |
+
try:
|
43 |
+
return AssistantAgent()
|
44 |
+
except Exception as e:
|
45 |
+
logger.error(f"Error initializing agent: {e}")
|
46 |
+
st.error(f"Could not initialize AI assistant: {str(e)}")
|
47 |
+
# Return a dummy agent as fallback
|
48 |
+
class DummyAgent:
|
49 |
+
def query(self, question):
|
50 |
+
return {
|
51 |
+
"answer": "I'm having trouble starting up. Please try refreshing the page.",
|
52 |
+
"sources": []
|
53 |
+
}
|
54 |
+
def add_conversation_to_memory(self, *args, **kwargs):
|
55 |
+
pass
|
56 |
+
return DummyAgent()
|
57 |
+
|
58 |
+
# Function to initialize document processor safely
|
59 |
+
@st.cache_resource
|
60 |
+
def get_document_processor(agent):
|
61 |
+
logger.info("Initializing DocumentProcessor (should only happen once)")
|
62 |
+
try:
|
63 |
+
return DocumentProcessor(agent.memory_manager)
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error initializing document processor: {e}")
|
66 |
+
st.error(f"Could not initialize document processor: {str(e)}")
|
67 |
+
# Return a dummy processor as fallback
|
68 |
+
class DummyProcessor:
|
69 |
+
def ingest_file(self, *args, **kwargs):
|
70 |
+
return ["dummy-id"]
|
71 |
+
def ingest_text(self, *args, **kwargs):
|
72 |
+
return ["dummy-id"]
|
73 |
+
return DummyProcessor()
|
74 |
+
|
75 |
# Initialize session state variables
|
76 |
if "messages" not in st.session_state:
|
77 |
st.session_state.messages = []
|
78 |
|
79 |
+
# Initialize agent and document processor with caching to prevent multiple instances
|
80 |
+
agent = get_agent()
|
81 |
+
document_processor = get_document_processor(agent)
|
|
|
|
|
82 |
|
83 |
# App title
|
84 |
st.title("🤗 Personal AI Assistant (Hugging Face)")
|
|
|
105 |
f.write(uploaded_file.getvalue())
|
106 |
|
107 |
# Ingest the document
|
108 |
+
document_processor.ingest_file(tmp_path, {"original_name": uploaded_file.name})
|
109 |
|
110 |
# Clean up the temporary file
|
111 |
os.unlink(tmp_path)
|
|
|
128 |
}
|
129 |
|
130 |
# Ingest the text
|
131 |
+
document_processor.ingest_text(text_input, metadata)
|
132 |
|
133 |
st.success("Text added to knowledge base successfully!")
|
134 |
except Exception as e:
|
|
|
180 |
# Generate response
|
181 |
with st.chat_message("assistant"):
|
182 |
with st.spinner("Thinking..."):
|
183 |
+
try:
|
184 |
+
# Add retry mechanism for vector store issues
|
185 |
+
max_retries = 3
|
186 |
+
for attempt in range(max_retries):
|
187 |
+
try:
|
188 |
+
response = agent.query(prompt)
|
189 |
+
break
|
190 |
+
except Exception as e:
|
191 |
+
if "already accessed by another instance" in str(e) and attempt < max_retries - 1:
|
192 |
+
logger.warning(f"Vector store access conflict, retrying ({attempt+1}/{max_retries})...")
|
193 |
+
time.sleep(1) # Wait before retrying
|
194 |
+
else:
|
195 |
+
raise
|
196 |
+
|
197 |
+
answer = response["answer"]
|
198 |
+
sources = response["sources"]
|
199 |
+
|
200 |
+
# Display the response
|
201 |
+
st.write(answer)
|
202 |
+
|
203 |
+
# Display sources in an expander
|
204 |
+
with st.expander("View Sources"):
|
205 |
+
if sources:
|
206 |
+
for i, source in enumerate(sources, 1):
|
207 |
+
st.write(f"{i}. {source['file_name']}" + (f" (Page {source['page']})" if source.get('page') else ""))
|
208 |
+
st.text(source['content'])
|
209 |
+
else:
|
210 |
+
st.write("No specific sources used.")
|
211 |
+
|
212 |
+
# Save conversation
|
213 |
+
save_conversation(prompt, answer, sources)
|
214 |
+
|
215 |
+
# Add assistant response to chat history
|
216 |
+
st.session_state.messages.append({
|
217 |
+
"role": "assistant",
|
218 |
+
"content": answer,
|
219 |
+
"sources": sources
|
220 |
+
})
|
221 |
+
|
222 |
+
# Update the agent's memory
|
223 |
+
agent.add_conversation_to_memory(prompt, answer)
|
224 |
+
|
225 |
+
except Exception as e:
|
226 |
+
error_msg = f"Error generating response: {str(e)}"
|
227 |
+
logger.error(error_msg)
|
228 |
+
st.error(error_msg)
|
229 |
+
st.session_state.messages.append({
|
230 |
+
"role": "assistant",
|
231 |
+
"content": "I'm sorry, I encountered an error while processing your request. Please try again or refresh the page.",
|
232 |
+
"sources": []
|
233 |
+
})
|
234 |
|
235 |
# Add a footer
|
236 |
st.markdown("---")
|