2B / app /core /ingestion.py
37-AN
Fix Streamlit cache_resource unhashable parameter error
48a1a2b
raw
history blame
5.96 kB
import os
import sys
import logging
import time
import random
from typing import List, Dict, Any
from langchain.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add project root to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from app.config import CHUNK_SIZE, CHUNK_OVERLAP
from app.core.memory import MemoryManager
class DocumentProcessor:
"""Processes documents for ingestion into the vector database."""
def __init__(self, memory_manager: MemoryManager):
self.memory_manager = memory_manager
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP
)
logger.info(f"DocumentProcessor initialized with chunk size {CHUNK_SIZE}, overlap {CHUNK_OVERLAP}")
def process_file(self, file_path: str) -> List[str]:
"""Process a file and return a list of document chunks."""
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
# Get the file extension
_, extension = os.path.splitext(file_path)
extension = extension.lower()
logger.info(f"Processing file: {file_path} with extension {extension}")
# Load the file using the appropriate loader
if extension == '.pdf':
loader = PyPDFLoader(file_path)
elif extension == '.txt':
loader = TextLoader(file_path)
elif extension == '.csv':
loader = CSVLoader(file_path)
else:
raise ValueError(f"Unsupported file type: {extension}")
# Load and split the documents
documents = loader.load()
chunks = self.text_splitter.split_documents(documents)
logger.info(f"Split file into {len(chunks)} chunks")
return chunks
def _retry_operation(self, operation, max_retries=3):
"""Retry an operation with exponential backoff."""
for attempt in range(max_retries):
try:
return operation()
except Exception as e:
if "already accessed by another instance" in str(e) and attempt < max_retries - 1:
wait_time = random.uniform(0.5, 2.0) * (attempt + 1)
logger.warning(f"Vector store access conflict, retrying ({attempt+1}/{max_retries}) in {wait_time:.2f}s...")
time.sleep(wait_time)
else:
# Different error or last attempt, re-raise
raise
def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]:
"""Ingest a file into the vector database."""
try:
# Process the file
chunks = self.process_file(file_path)
# Add metadata to each chunk
if metadata is None:
metadata = {}
# Add file path to metadata
base_metadata = {
"source": file_path,
"file_name": os.path.basename(file_path)
}
base_metadata.update(metadata)
# Prepare chunks and metadatas
texts = [chunk.page_content for chunk in chunks]
metadatas = []
for i, chunk in enumerate(chunks):
chunk_metadata = base_metadata.copy()
if hasattr(chunk, 'metadata'):
chunk_metadata.update(chunk.metadata)
chunk_metadata["chunk_id"] = i
metadatas.append(chunk_metadata)
# Store in vector database with retry mechanism
logger.info(f"Adding {len(texts)} chunks to vector database")
def add_to_vectordb():
return self.memory_manager.add_texts(texts, metadatas)
ids = self._retry_operation(add_to_vectordb)
logger.info(f"Successfully added chunks with IDs: {ids[:3]}...")
return ids
except Exception as e:
logger.error(f"Error ingesting file {file_path}: {str(e)}")
# Return placeholder IDs if there's an error
return [f"error-{random.randint(1000, 9999)}" for _ in range(len(chunks) if 'chunks' in locals() else 1)]
def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]:
"""Ingest raw text into the vector database."""
try:
if metadata is None:
metadata = {}
# Split the text
chunks = self.text_splitter.split_text(text)
logger.info(f"Split text into {len(chunks)} chunks")
# Prepare metadatas
metadatas = []
for i in range(len(chunks)):
chunk_metadata = metadata.copy()
chunk_metadata["chunk_id"] = i
chunk_metadata["source"] = "direct_input"
metadatas.append(chunk_metadata)
# Store in vector database with retry mechanism
def add_to_vectordb():
return self.memory_manager.add_texts(chunks, metadatas)
ids = self._retry_operation(add_to_vectordb)
logger.info(f"Successfully added text chunks with IDs: {ids[:3] if len(ids) > 3 else ids}...")
return ids
except Exception as e:
logger.error(f"Error ingesting text: {str(e)}")
# Return placeholder IDs if there's an error
return [f"error-{random.randint(1000, 9999)}" for _ in range(len(chunks) if 'chunks' in locals() else 1)]