Spaces:
Sleeping
Sleeping
File size: 10,304 Bytes
41b1248 3f35dda 41b1248 3f35dda 41b1248 fd490fb cc9c601 2b7f2f4 cc9c601 d676716 fd490fb d676716 fd490fb cc9c601 fd490fb cc9c601 fd490fb cc9c601 798bcec cc9c601 2b7f2f4 cc9c601 fd490fb d676716 fd490fb d676716 fd490fb d676716 fd490fb d676716 cc9c601 d676716 cc9c601 fd490fb cc9c601 fd490fb cc9c601 fd490fb cc9c601 fd490fb cc9c601 fd490fb d676716 fd490fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
try:
import flash_attn
except:
import subprocess
print("Installing flash-attn...")
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import flash_attn
print("flash-attn installed.")
import os
import uuid
import requests
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
BitsAndBytesConfig,
)
from threading import Thread
import gradio as gr
from dotenv import load_dotenv
import spaces
load_dotenv()
MODEL_NAME = "hatakeyama-llm-team/Tanuki-8B-Instruct"
PREFERENCE_API_URL = os.getenv("PREFERENCE_API_URL")
assert PREFERENCE_API_URL, "PREFERENCE_API_URL is not set"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, quantization_config=quantization_config, device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
print("Compiling model...")
model = torch.compile(model)
print("Model compiled.")
def send_report(
type: str,
data: dict,
):
print(f"Sending report: {data}")
try:
res = requests.post(PREFERENCE_API_URL, json={"type": type, **data})
print(f"Report sent: {res.json()}")
except Exception as e:
print(f"Failed to send report: {e}")
def send_reply(
reply_id: str,
parent_id: str,
role: str,
body: str,
):
send_report(
"conversation",
{
"reply_id": reply_id,
"parent_id": parent_id,
"role": role,
"body": body,
},
)
def send_score(
reply_id: str,
score: int,
):
# print(f"Score: {score}, reply_id: {reply_id}")
send_report(
"score",
{
"reply_id": reply_id,
"score": score,
},
)
def generate_unique_id():
return str(uuid.uuid4())
@spaces.GPU(duration=45)
def generate(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
):
if not message or message.strip() == "":
return "", history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
tokenized_input = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=tokenized_input,
streamer=streamer,
max_new_tokens=int(max_tokens),
do_sample=True,
temperature=float(temperature),
top_k=int(top_k),
top_p=float(top_p),
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# 返す値を初期化
partial_message = ""
for new_token in streamer:
partial_message += new_token
new_history = history + [(message, partial_message)]
# 入力テキストをクリアする
yield "", new_history
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
reply_ids: list[str],
):
if len(reply_ids) == 0:
reply_ids = [generate_unique_id()]
last_reply_id = reply_ids[-1]
user_reply_id = generate_unique_id()
assistant_reply_id = generate_unique_id()
reply_ids.append(user_reply_id)
reply_ids.append(assistant_reply_id)
for stream in generate(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
top_k,
):
yield *stream, reply_ids
# 記録を取る
if len(reply_ids) == 3:
send_reply(reply_ids[0], "", "system", system_message)
send_reply(user_reply_id, last_reply_id, "user", message)
send_reply(assistant_reply_id, user_reply_id, "assistant", stream[1][-1][1])
def retry(
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
reply_ids: list[str],
):
# 最後のメッセージを削除
last_conversation = history[-1]
user_message = last_conversation[0]
history = history[:-1]
user_reply_id = reply_ids[-2]
reply_ids = reply_ids[:-1]
assistant_reply_id = generate_unique_id()
reply_ids.append(assistant_reply_id)
for stream in generate(
user_message,
history,
system_message,
max_tokens,
temperature,
top_p,
top_k,
):
yield *stream, reply_ids
# 記録を取る
send_reply(assistant_reply_id, user_reply_id, "assistant", stream[1][-1][1])
def like_reponse(like_data: gr.LikeData, reply_ids: list[str]):
# print(like_data.index, like_data.value, like_data.liked)
assert isinstance(like_data.index, list)
# 評価を送信
send_score(reply_ids[like_data.index[0] + 1], 1 if like_data.liked else -1)
def demo():
with gr.Blocks() as ui:
gr.Markdown(
"""\
# Tanuki 8B Instruct デモ
モデル: https://huggingface.co/hatakeyama-llm-team/Tanuki-8B-Instruct
アシスタントの回答が不適切だと思った場合は **低評価ボタンを押して低評価を送信**、同様に、回答が素晴らしいと思った場合は**高評価ボタンを押して高評価を送信**することで、モデルの改善に貢献できます。
## 注意点
**本デモに入力されたデータ・会話は匿名で全て記録されます**。これらのデータは Tanuki の学習に利用する可能性があります。そのため、**機密情報・個人情報を入力しないでください**。
"""
)
reply_ids = gr.State(value=[generate_unique_id()])
chat_history = gr.Chatbot(value=[])
with gr.Row():
retry_btn = gr.Button(value="🔄 再生成", scale=1, size="sm")
clear_btn = gr.ClearButton(
components=[chat_history], value="🗑️ 削除", scale=1, size="sm"
)
with gr.Group():
with gr.Row():
input_text = gr.Textbox(
value="",
placeholder="質問を入力してください...",
show_label=False,
scale=8,
)
start_btn = gr.Button(
value="送信",
variant="primary",
scale=1,
)
gr.Markdown(
value="※ 機密情報を入力しないでください。また、Tanuki は誤った情報を生成する可能性があります。"
)
with gr.Accordion(label="詳細設定", open=False):
system_prompt_text = gr.Textbox(
label="システムプロンプト",
value="以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。",
)
max_new_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
)
top_k_slider = gr.Slider(
minimum=1, maximum=2000, value=250, step=10, label="Top-k"
)
gr.Examples(
examples=[
["たぬきってなんですか?"],
["情けは人の為ならずとはどういう意味ですか?"],
["まどマギで一番可愛いのは誰?"],
["明晰夢とはなんですか?"],
[
"シュレディンガー方程式とシュレディンガーの猫はどのような関係がありますか?"
],
],
inputs=[input_text],
cache_examples=False,
)
start_btn.click(
respond,
inputs=[
input_text,
chat_history,
system_prompt_text,
max_new_tokens_slider,
temperature_slider,
top_p_slider,
top_k_slider,
reply_ids,
],
outputs=[input_text, chat_history, reply_ids],
)
input_text.submit(
respond,
inputs=[
input_text,
chat_history,
system_prompt_text,
max_new_tokens_slider,
temperature_slider,
top_p_slider,
top_k_slider,
reply_ids,
],
outputs=[input_text, chat_history, reply_ids],
)
retry_btn.click(
retry,
inputs=[
chat_history,
system_prompt_text,
max_new_tokens_slider,
temperature_slider,
top_p_slider,
top_k_slider,
reply_ids,
],
outputs=[input_text, chat_history, reply_ids],
)
# 評価されたら
chat_history.like(like_reponse, inputs=[reply_ids], outputs=None)
clear_btn.click(
lambda: [generate_unique_id()], # system_message用のIDを生成
outputs=[reply_ids],
)
ui.launch()
if __name__ == "__main__":
demo()
|