Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,14 @@ import spaces
|
|
33 |
load_dotenv()
|
34 |
|
35 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
quantization_config = BitsAndBytesConfig(
|
39 |
load_in_4bit=True,
|
@@ -41,18 +48,25 @@ quantization_config = BitsAndBytesConfig(
|
|
41 |
bnb_4bit_quant_type="nf4",
|
42 |
bnb_4bit_use_double_quant=True,
|
43 |
)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
print("Compiling model...")
|
50 |
-
model
|
|
|
51 |
print("Model compiled.")
|
52 |
|
53 |
|
54 |
-
@spaces.GPU(duration=
|
55 |
def generate(
|
|
|
56 |
message: str,
|
57 |
history: list[tuple[str, str]],
|
58 |
system_message: str,
|
@@ -74,12 +88,12 @@ def generate(
|
|
74 |
|
75 |
messages.append({"role": "user", "content": message})
|
76 |
|
77 |
-
tokenized_input =
|
78 |
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt"
|
79 |
).to(model.device)
|
80 |
|
81 |
streamer = TextIteratorStreamer(
|
82 |
-
|
83 |
)
|
84 |
generate_kwargs = dict(
|
85 |
input_ids=tokenized_input,
|
@@ -91,7 +105,7 @@ def generate(
|
|
91 |
top_p=float(top_p),
|
92 |
num_beams=1,
|
93 |
)
|
94 |
-
t = Thread(target=
|
95 |
t.start()
|
96 |
|
97 |
# 返す値を初期化
|
@@ -105,6 +119,7 @@ def generate(
|
|
105 |
|
106 |
|
107 |
def respond(
|
|
|
108 |
message: str,
|
109 |
history: list[tuple[str, str]],
|
110 |
system_message: str,
|
@@ -115,6 +130,7 @@ def respond(
|
|
115 |
):
|
116 |
|
117 |
for stream in generate(
|
|
|
118 |
message,
|
119 |
history,
|
120 |
system_message,
|
@@ -127,6 +143,7 @@ def respond(
|
|
127 |
|
128 |
|
129 |
def retry(
|
|
|
130 |
history: list[tuple[str, str]],
|
131 |
system_message: str,
|
132 |
max_tokens: int,
|
@@ -140,6 +157,7 @@ def retry(
|
|
140 |
history = history[:-1]
|
141 |
|
142 |
for stream in generate(
|
|
|
143 |
user_message,
|
144 |
history,
|
145 |
system_message,
|
@@ -156,11 +174,13 @@ def demo():
|
|
156 |
|
157 |
gr.Markdown(
|
158 |
"""\
|
159 |
-
#
|
160 |
-
|
161 |
"""
|
162 |
)
|
163 |
|
|
|
|
|
164 |
chat_history = gr.Chatbot(value=[])
|
165 |
|
166 |
with gr.Row():
|
@@ -183,7 +203,7 @@ def demo():
|
|
183 |
scale=2,
|
184 |
)
|
185 |
gr.Markdown(
|
186 |
-
value="※
|
187 |
)
|
188 |
|
189 |
with gr.Accordion(label="詳細設定", open=False):
|
@@ -195,7 +215,7 @@ def demo():
|
|
195 |
minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"
|
196 |
)
|
197 |
temperature_slider = gr.Slider(
|
198 |
-
minimum=0.1, maximum=
|
199 |
)
|
200 |
top_p_slider = gr.Slider(
|
201 |
minimum=0.1,
|
@@ -210,7 +230,6 @@ def demo():
|
|
210 |
|
211 |
gr.Examples(
|
212 |
examples=[
|
213 |
-
["たぬきってなんですか?"],
|
214 |
["情けは人の為ならずとはどういう意味ですか?"],
|
215 |
["まどマギで一番可愛いのは誰?"],
|
216 |
],
|
@@ -218,22 +237,11 @@ def demo():
|
|
218 |
cache_examples=False,
|
219 |
)
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
input_text,
|
225 |
-
chat_history,
|
226 |
-
system_prompt_text,
|
227 |
-
max_new_tokens_slider,
|
228 |
-
temperature_slider,
|
229 |
-
top_p_slider,
|
230 |
-
top_k_slider,
|
231 |
-
],
|
232 |
-
outputs=[input_text, chat_history],
|
233 |
-
)
|
234 |
-
input_text.submit(
|
235 |
-
respond,
|
236 |
inputs=[
|
|
|
237 |
input_text,
|
238 |
chat_history,
|
239 |
system_prompt_text,
|
@@ -247,6 +255,7 @@ def demo():
|
|
247 |
retry_btn.click(
|
248 |
retry,
|
249 |
inputs=[
|
|
|
250 |
chat_history,
|
251 |
system_prompt_text,
|
252 |
max_new_tokens_slider,
|
|
|
33 |
load_dotenv()
|
34 |
|
35 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
36 |
+
MODEL_NAME_MAP = {
|
37 |
+
"150m-instruct3": "llm-jp/llm-jp-3-150m-instruct3",
|
38 |
+
"440m-instruct3": "llm-jp/llm-jp-3-440m-instruct3",
|
39 |
+
"980m-instruct3": "llm-jp/llm-jp-3-980m-instruct3",
|
40 |
+
"1.8b-instruct3": "llm-jp/llm-jp-3-1.8b-instruct3",
|
41 |
+
"3.7b-instruct3": "llm-jp/llm-jp-3-3.7b-instruct3",
|
42 |
+
"13b-instruct3": "llm-jp/llm-jp-3-13b-instruct3",
|
43 |
+
}
|
44 |
|
45 |
quantization_config = BitsAndBytesConfig(
|
46 |
load_in_4bit=True,
|
|
|
48 |
bnb_4bit_quant_type="nf4",
|
49 |
bnb_4bit_use_double_quant=True,
|
50 |
)
|
51 |
+
MODELS = {
|
52 |
+
key: AutoModelForCausalLM.from_pretrained(
|
53 |
+
MODEL_NAME, quantization_config=quantization_config, device_map="auto"
|
54 |
+
) for key, value in MODEL_NAME_MAP.items()
|
55 |
+
}
|
56 |
+
TOKENIZERS = {
|
57 |
+
key: AutoTokenizer.from_pretrained(MODEL_NAME) for key, value in MODEL_NAME_MAP.items()
|
58 |
+
|
59 |
+
}
|
60 |
|
61 |
print("Compiling model...")
|
62 |
+
for key, model in MODELS:
|
63 |
+
MODELS[key] = torch.compile(model)
|
64 |
print("Model compiled.")
|
65 |
|
66 |
|
67 |
+
@spaces.GPU(duration=45)
|
68 |
def generate(
|
69 |
+
model_name: str,
|
70 |
message: str,
|
71 |
history: list[tuple[str, str]],
|
72 |
system_message: str,
|
|
|
88 |
|
89 |
messages.append({"role": "user", "content": message})
|
90 |
|
91 |
+
tokenized_input = TOKENIZERS[model_name].apply_chat_template(
|
92 |
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt"
|
93 |
).to(model.device)
|
94 |
|
95 |
streamer = TextIteratorStreamer(
|
96 |
+
TOKENIZERS[model_name], timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
97 |
)
|
98 |
generate_kwargs = dict(
|
99 |
input_ids=tokenized_input,
|
|
|
105 |
top_p=float(top_p),
|
106 |
num_beams=1,
|
107 |
)
|
108 |
+
t = Thread(target=MODELS[model_name].generate, kwargs=generate_kwargs)
|
109 |
t.start()
|
110 |
|
111 |
# 返す値を初期化
|
|
|
119 |
|
120 |
|
121 |
def respond(
|
122 |
+
model_name: str,
|
123 |
message: str,
|
124 |
history: list[tuple[str, str]],
|
125 |
system_message: str,
|
|
|
130 |
):
|
131 |
|
132 |
for stream in generate(
|
133 |
+
model_name,
|
134 |
message,
|
135 |
history,
|
136 |
system_message,
|
|
|
143 |
|
144 |
|
145 |
def retry(
|
146 |
+
model_name: str,
|
147 |
history: list[tuple[str, str]],
|
148 |
system_message: str,
|
149 |
max_tokens: int,
|
|
|
157 |
history = history[:-1]
|
158 |
|
159 |
for stream in generate(
|
160 |
+
model_name,
|
161 |
user_message,
|
162 |
history,
|
163 |
system_message,
|
|
|
174 |
|
175 |
gr.Markdown(
|
176 |
"""\
|
177 |
+
# llm-jp/llm-jp-3 instruct3 モデルデモ
|
178 |
+
コレクション: https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731
|
179 |
"""
|
180 |
)
|
181 |
|
182 |
+
model_name_dropdown = gr.Dropdown(label="モデル", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
|
183 |
+
|
184 |
chat_history = gr.Chatbot(value=[])
|
185 |
|
186 |
with gr.Row():
|
|
|
203 |
scale=2,
|
204 |
)
|
205 |
gr.Markdown(
|
206 |
+
value="※ 誤った情報を生成する可能性があります。"
|
207 |
)
|
208 |
|
209 |
with gr.Accordion(label="詳細設定", open=False):
|
|
|
215 |
minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"
|
216 |
)
|
217 |
temperature_slider = gr.Slider(
|
218 |
+
minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"
|
219 |
)
|
220 |
top_p_slider = gr.Slider(
|
221 |
minimum=0.1,
|
|
|
230 |
|
231 |
gr.Examples(
|
232 |
examples=[
|
|
|
233 |
["情けは人の為ならずとはどういう意味ですか?"],
|
234 |
["まどマギで一番可愛いのは誰?"],
|
235 |
],
|
|
|
237 |
cache_examples=False,
|
238 |
)
|
239 |
|
240 |
+
gr.on(
|
241 |
+
triggers=[start_btn.click, input_text.submit],
|
242 |
+
fn=respond,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
inputs=[
|
244 |
+
model_name_dropdown,
|
245 |
input_text,
|
246 |
chat_history,
|
247 |
system_prompt_text,
|
|
|
255 |
retry_btn.click(
|
256 |
retry,
|
257 |
inputs=[
|
258 |
+
model_name_dropdown,
|
259 |
chat_history,
|
260 |
system_prompt_text,
|
261 |
max_new_tokens_slider,
|