|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  |  | 
					
						
						|  | __all__ = ['ResNet', 'resnet22'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def conv3x3(in_planes, out_planes, stride=1): | 
					
						
						|  | "3x3 convolution with padding" | 
					
						
						|  | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | 
					
						
						|  | padding=1, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BasicBlock(nn.Module): | 
					
						
						|  | expansion = 1 | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, inplanes, planes, stride=1, downsample=None): | 
					
						
						|  | super(BasicBlock, self).__init__() | 
					
						
						|  | self.conv1 = conv3x3(inplanes, planes, stride) | 
					
						
						|  | self.bn1 = nn.BatchNorm2d(planes) | 
					
						
						|  | self.relu = nn.ReLU(inplace=True) | 
					
						
						|  | self.conv2 = conv3x3(planes, planes) | 
					
						
						|  | self.bn2 = nn.BatchNorm2d(planes) | 
					
						
						|  | self.downsample = downsample | 
					
						
						|  | self.stride = stride | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | residual = x | 
					
						
						|  |  | 
					
						
						|  | out = self.conv1(x) | 
					
						
						|  | out = self.bn1(out) | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | out = self.conv2(out) | 
					
						
						|  | out = self.bn2(out) | 
					
						
						|  |  | 
					
						
						|  | if self.downsample is not None: | 
					
						
						|  | residual = self.downsample(x) | 
					
						
						|  |  | 
					
						
						|  | out += residual | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResNet(nn.Module): | 
					
						
						|  | """Another Strucutre used in caffe-resnet25""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False): | 
					
						
						|  | self.inplanes = 64 | 
					
						
						|  | super(ResNet, self).__init__() | 
					
						
						|  | self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False) | 
					
						
						|  | self.bn1 = nn.BatchNorm2d(32) | 
					
						
						|  | self.relu1 = nn.ReLU(inplace=True) | 
					
						
						|  |  | 
					
						
						|  | self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) | 
					
						
						|  | self.bn2 = nn.BatchNorm2d(64) | 
					
						
						|  | self.relu2 = nn.ReLU(inplace=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.layer1 = self._make_layer(block, 128, layers[0], stride=2) | 
					
						
						|  | self.layer2 = self._make_layer(block, 256, layers[1], stride=2) | 
					
						
						|  | self.layer3 = self._make_layer(block, 512, layers[2], stride=2) | 
					
						
						|  |  | 
					
						
						|  | self.conv_param = nn.Conv2d(512, num_classes, 1) | 
					
						
						|  |  | 
					
						
						|  | self.avgpool = nn.AdaptiveAvgPool2d(1) | 
					
						
						|  |  | 
					
						
						|  | self.fc_flg = fc_flg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for m in self.modules(): | 
					
						
						|  | if isinstance(m, nn.Conv2d): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | 
					
						
						|  | elif isinstance(m, nn.BatchNorm2d): | 
					
						
						|  | m.weight.data.fill_(1) | 
					
						
						|  | m.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | def _make_layer(self, block, planes, blocks, stride=1): | 
					
						
						|  | downsample = None | 
					
						
						|  | if stride != 1 or self.inplanes != planes * block.expansion: | 
					
						
						|  | downsample = nn.Sequential( | 
					
						
						|  | nn.Conv2d(self.inplanes, planes * block.expansion, | 
					
						
						|  | kernel_size=1, stride=stride, bias=False), | 
					
						
						|  | nn.BatchNorm2d(planes * block.expansion), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | layers = [] | 
					
						
						|  | layers.append(block(self.inplanes, planes, stride, downsample)) | 
					
						
						|  | self.inplanes = planes * block.expansion | 
					
						
						|  | for i in range(1, blocks): | 
					
						
						|  | layers.append(block(self.inplanes, planes)) | 
					
						
						|  |  | 
					
						
						|  | return nn.Sequential(*layers) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.conv1(x) | 
					
						
						|  | x = self.bn1(x) | 
					
						
						|  | x = self.relu1(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.conv2(x) | 
					
						
						|  | x = self.bn2(x) | 
					
						
						|  | x = self.relu2(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.layer1(x) | 
					
						
						|  | x = self.layer2(x) | 
					
						
						|  | x = self.layer3(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | xp = self.conv_param(x) | 
					
						
						|  | xp = self.avgpool(xp) | 
					
						
						|  | xp = xp.view(xp.size(0), -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return xp | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def resnet22(**kwargs): | 
					
						
						|  | model = ResNet( | 
					
						
						|  | BasicBlock, | 
					
						
						|  | [3, 4, 3], | 
					
						
						|  | num_landmarks=kwargs.get('num_landmarks', 136), | 
					
						
						|  | input_channel=kwargs.get('input_channel', 3), | 
					
						
						|  | fc_flg=False | 
					
						
						|  | ) | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | main() | 
					
						
						|  |  |