Spaces:
Running
on
Zero
Running
on
Zero
clean up video files
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from gradio_rerun import Rerun
|
|
13 |
import spaces
|
14 |
|
15 |
# Run the script to get pretrained models
|
16 |
-
if not os.path.exists("checkpoints/depth_pro.pt"):
|
17 |
print("downloading pretrained model")
|
18 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
19 |
|
@@ -64,10 +64,11 @@ def run_rerun(path_to_video):
|
|
64 |
break
|
65 |
|
66 |
frame_idx += 1
|
67 |
-
if frame_idx %
|
68 |
continue
|
69 |
|
70 |
-
|
|
|
71 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
72 |
|
73 |
rr.set_time_sequence("frame", frame_idx)
|
@@ -91,13 +92,15 @@ def run_rerun(path_to_video):
|
|
91 |
|
92 |
rr.log(
|
93 |
"world/camera/depth",
|
94 |
-
# need 0.19 stable for this
|
95 |
-
# rr.DepthImage(depth, meter=1, depth_range=(depth.min(), depth.max())),
|
96 |
rr.DepthImage(depth, meter=1),
|
97 |
)
|
98 |
|
99 |
yield stream.read()
|
100 |
|
|
|
|
|
|
|
|
|
101 |
|
102 |
@spaces.GPU(duration=40)
|
103 |
def estimate_depth(frame):
|
|
|
13 |
import spaces
|
14 |
|
15 |
# Run the script to get pretrained models
|
16 |
+
if not os.path.exists("./checkpoints/depth_pro.pt"):
|
17 |
print("downloading pretrained model")
|
18 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
19 |
|
|
|
64 |
break
|
65 |
|
66 |
frame_idx += 1
|
67 |
+
if frame_idx % 3 != 0:
|
68 |
continue
|
69 |
|
70 |
+
# resize to avoid excessive time spent processing
|
71 |
+
frame = cv2.resize(frame, (640, 480))
|
72 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
73 |
|
74 |
rr.set_time_sequence("frame", frame_idx)
|
|
|
92 |
|
93 |
rr.log(
|
94 |
"world/camera/depth",
|
|
|
|
|
95 |
rr.DepthImage(depth, meter=1),
|
96 |
)
|
97 |
|
98 |
yield stream.read()
|
99 |
|
100 |
+
# clean up
|
101 |
+
if os.exists(path_to_video):
|
102 |
+
os.remove(path_to_video)
|
103 |
+
|
104 |
|
105 |
@spaces.GPU(duration=40)
|
106 |
def estimate_depth(frame):
|