owiedotch commited on
Commit
49098ca
·
verified ·
1 Parent(s): be68594

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -15,7 +15,7 @@ from pathlib import Path
15
 
16
  # Initialize the model and ensure it's on the correct device
17
  def load_model():
18
- model = SemantiCodec(token_rate=25, semantic_vocab_size=32768) # 0.35 kbps
19
  if torch.cuda.is_available():
20
  # Move the model to CUDA and ensure it's fully initialized on CUDA
21
  model = model.to("cuda:0")
@@ -200,7 +200,7 @@ def stream_both(audio_path):
200
  yield None, f"Encoded to {tokens.shape[1]} tokens, starting decoding..."
201
 
202
  # If tokens are too small, decode all at once
203
- if tokens.shape[1] < 500:
204
  # Convert to torch tensor with Long dtype for embedding
205
  tokens_tensor = torch.tensor(tokens, dtype=torch.long).to(model_device)
206
 
@@ -215,7 +215,7 @@ def stream_both(audio_path):
215
  return
216
 
217
  # Split tokens into chunks for streaming
218
- chunk_size = 500 # Number of tokens per chunk
219
  num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
220
 
221
  all_audio_chunks = []
@@ -282,7 +282,7 @@ def stream_decode_tokens(token_file):
282
  semanticodec.to(model_device)
283
 
284
  # If tokens are too small, decode all at once
285
- if tokens.shape[1] < 500:
286
  # Convert to torch tensor with Long dtype for embedding
287
  tokens_tensor = torch.tensor(tokens, dtype=torch.long)
288
  tokens_tensor = tokens_tensor.to(model_device)
@@ -297,7 +297,7 @@ def stream_decode_tokens(token_file):
297
  return
298
 
299
  # Split tokens into chunks for streaming
300
- chunk_size = 500 # Number of tokens per chunk
301
  num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
302
 
303
  # First status update
 
15
 
16
  # Initialize the model and ensure it's on the correct device
17
  def load_model():
18
+ model = SemantiCodec(token_rate=100, semantic_vocab_size=32768) # 0.35 kbps
19
  if torch.cuda.is_available():
20
  # Move the model to CUDA and ensure it's fully initialized on CUDA
21
  model = model.to("cuda:0")
 
200
  yield None, f"Encoded to {tokens.shape[1]} tokens, starting decoding..."
201
 
202
  # If tokens are too small, decode all at once
203
+ if tokens.shape[1] < 1500: # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
204
  # Convert to torch tensor with Long dtype for embedding
205
  tokens_tensor = torch.tensor(tokens, dtype=torch.long).to(model_device)
206
 
 
215
  return
216
 
217
  # Split tokens into chunks for streaming
218
+ chunk_size = 1500 # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
219
  num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
220
 
221
  all_audio_chunks = []
 
282
  semanticodec.to(model_device)
283
 
284
  # If tokens are too small, decode all at once
285
+ if tokens.shape[1] < 1500: # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
286
  # Convert to torch tensor with Long dtype for embedding
287
  tokens_tensor = torch.tensor(tokens, dtype=torch.long)
288
  tokens_tensor = tokens_tensor.to(model_device)
 
297
  return
298
 
299
  # Split tokens into chunks for streaming
300
+ chunk_size = 1500 # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
301
  num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
302
 
303
  # First status update