Update app.py
Browse files
app.py
CHANGED
|
@@ -10,11 +10,12 @@ import tempfile
|
|
| 10 |
import io
|
| 11 |
import uuid
|
| 12 |
import pickle
|
|
|
|
| 13 |
from pathlib import Path
|
| 14 |
|
| 15 |
# Initialize the model and ensure it's on the correct device
|
| 16 |
def load_model():
|
| 17 |
-
model = SemantiCodec(token_rate=100, semantic_vocab_size=
|
| 18 |
if torch.cuda.is_available():
|
| 19 |
# Move the model to CUDA
|
| 20 |
model.to("cuda:0")
|
|
@@ -26,6 +27,9 @@ semanticodec = load_model()
|
|
| 26 |
model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 27 |
print(f"Model initialized on device: {model_device}")
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
@spaces.GPU(duration=20)
|
| 30 |
def encode_audio(audio_path):
|
| 31 |
"""Encode audio file to tokens and return them as a file"""
|
|
@@ -106,12 +110,11 @@ def decode_tokens(token_file):
|
|
| 106 |
|
| 107 |
# Extract audio data - this should be a numpy array
|
| 108 |
audio_data = waveform[0, 0] # Shape should be [time]
|
| 109 |
-
sample_rate = 16000
|
| 110 |
|
| 111 |
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
|
| 112 |
|
| 113 |
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
|
| 114 |
-
return (
|
| 115 |
except Exception as e:
|
| 116 |
print(f"Decoding error: {str(e)}")
|
| 117 |
return None, f"Error decoding tokens: {str(e)}"
|
|
@@ -155,16 +158,98 @@ def process_both(audio_path):
|
|
| 155 |
|
| 156 |
# Extract audio data - this should be a numpy array
|
| 157 |
audio_data = waveform[0, 0] # Shape should be [time]
|
| 158 |
-
sample_rate = 16000
|
| 159 |
|
| 160 |
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
|
| 161 |
|
| 162 |
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
|
| 163 |
-
return (
|
| 164 |
except Exception as e:
|
| 165 |
print(f"Processing error: {str(e)}")
|
| 166 |
return None, f"Error processing audio: {str(e)}"
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
# Create Gradio interface
|
| 169 |
with gr.Blocks(title="Oterin Audio Codec") as demo:
|
| 170 |
gr.Markdown("# Oterin Audio Codec")
|
|
@@ -186,6 +271,19 @@ with gr.Blocks(title="Oterin Audio Codec") as demo:
|
|
| 186 |
decode_btn = gr.Button("Decode")
|
| 187 |
decode_btn.click(decode_tokens, inputs=decode_input, outputs=[decode_output, decode_status])
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
with gr.Tab("Both (Encode & Decode)"):
|
| 190 |
with gr.Row():
|
| 191 |
both_input = gr.Audio(type="filepath", label="Input Audio")
|
|
|
|
| 10 |
import io
|
| 11 |
import uuid
|
| 12 |
import pickle
|
| 13 |
+
import time
|
| 14 |
from pathlib import Path
|
| 15 |
|
| 16 |
# Initialize the model and ensure it's on the correct device
|
| 17 |
def load_model():
|
| 18 |
+
model = SemantiCodec(token_rate=100, semantic_vocab_size=16384) # 1.35 kbps
|
| 19 |
if torch.cuda.is_available():
|
| 20 |
# Move the model to CUDA
|
| 21 |
model.to("cuda:0")
|
|
|
|
| 27 |
model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 28 |
print(f"Model initialized on device: {model_device}")
|
| 29 |
|
| 30 |
+
# Define sample rate as a constant
|
| 31 |
+
SAMPLE_RATE = 32000
|
| 32 |
+
|
| 33 |
@spaces.GPU(duration=20)
|
| 34 |
def encode_audio(audio_path):
|
| 35 |
"""Encode audio file to tokens and return them as a file"""
|
|
|
|
| 110 |
|
| 111 |
# Extract audio data - this should be a numpy array
|
| 112 |
audio_data = waveform[0, 0] # Shape should be [time]
|
|
|
|
| 113 |
|
| 114 |
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
|
| 115 |
|
| 116 |
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
|
| 117 |
+
return (SAMPLE_RATE, audio_data), f"Decoded {tokens.shape[1]} tokens to audio"
|
| 118 |
except Exception as e:
|
| 119 |
print(f"Decoding error: {str(e)}")
|
| 120 |
return None, f"Error decoding tokens: {str(e)}"
|
|
|
|
| 158 |
|
| 159 |
# Extract audio data - this should be a numpy array
|
| 160 |
audio_data = waveform[0, 0] # Shape should be [time]
|
|
|
|
| 161 |
|
| 162 |
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
|
| 163 |
|
| 164 |
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
|
| 165 |
+
return (SAMPLE_RATE, audio_data), f"Encoded to {tokens.shape[1]} tokens\nDecoded {tokens.shape[1]} tokens to audio"
|
| 166 |
except Exception as e:
|
| 167 |
print(f"Processing error: {str(e)}")
|
| 168 |
return None, f"Error processing audio: {str(e)}"
|
| 169 |
|
| 170 |
+
@spaces.GPU(duration=360)
|
| 171 |
+
def stream_decode_tokens(token_file):
|
| 172 |
+
"""Decode tokens to audio in streaming chunks"""
|
| 173 |
+
# Ensure the file exists and has content
|
| 174 |
+
if not token_file or not os.path.exists(token_file):
|
| 175 |
+
yield None, "Error: Empty or missing token file"
|
| 176 |
+
return
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
# Load tokens using pickle instead of numpy load
|
| 180 |
+
with open(token_file, "rb") as f:
|
| 181 |
+
token_data = pickle.load(f)
|
| 182 |
+
|
| 183 |
+
tokens = token_data['tokens']
|
| 184 |
+
intended_device = token_data.get('device', model_device)
|
| 185 |
+
print(f"Loaded tokens with shape {tokens.shape}, intended device: {intended_device}")
|
| 186 |
+
|
| 187 |
+
# If tokens are too small, decode all at once
|
| 188 |
+
if tokens.shape[1] < 500:
|
| 189 |
+
# Convert to torch tensor with Long dtype for embedding
|
| 190 |
+
tokens_tensor = torch.tensor(tokens, dtype=torch.long)
|
| 191 |
+
tokens_tensor = tokens_tensor.to(model_device)
|
| 192 |
+
|
| 193 |
+
# Decode the tokens
|
| 194 |
+
waveform = semanticodec.decode(tokens_tensor)
|
| 195 |
+
if isinstance(waveform, torch.Tensor):
|
| 196 |
+
waveform = waveform.cpu().numpy()
|
| 197 |
+
|
| 198 |
+
audio_data = waveform[0, 0]
|
| 199 |
+
yield (SAMPLE_RATE, audio_data), f"Decoded {tokens.shape[1]} tokens to audio"
|
| 200 |
+
return
|
| 201 |
+
|
| 202 |
+
# Split tokens into chunks for streaming
|
| 203 |
+
chunk_size = 500 # Number of tokens per chunk
|
| 204 |
+
num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
|
| 205 |
+
|
| 206 |
+
# First status update
|
| 207 |
+
yield None, f"Starting decoding of {tokens.shape[1]} tokens in {num_chunks} chunks..."
|
| 208 |
+
|
| 209 |
+
all_audio_chunks = []
|
| 210 |
+
|
| 211 |
+
for i in range(num_chunks):
|
| 212 |
+
start_idx = i * chunk_size
|
| 213 |
+
end_idx = min((i + 1) * chunk_size, tokens.shape[1])
|
| 214 |
+
|
| 215 |
+
print(f"Decoding chunk {i+1}/{num_chunks}, tokens {start_idx} to {end_idx}")
|
| 216 |
+
|
| 217 |
+
# Extract chunk of tokens
|
| 218 |
+
token_chunk = tokens[:, start_idx:end_idx, :]
|
| 219 |
+
|
| 220 |
+
# Convert to torch tensor with Long dtype
|
| 221 |
+
tokens_tensor = torch.tensor(token_chunk, dtype=torch.long)
|
| 222 |
+
tokens_tensor = tokens_tensor.to(model_device)
|
| 223 |
+
|
| 224 |
+
# Ensure model is on the expected device
|
| 225 |
+
semanticodec.to(model_device)
|
| 226 |
+
|
| 227 |
+
# Decode the tokens
|
| 228 |
+
waveform = semanticodec.decode(tokens_tensor)
|
| 229 |
+
if isinstance(waveform, torch.Tensor):
|
| 230 |
+
waveform = waveform.cpu().numpy()
|
| 231 |
+
|
| 232 |
+
# Extract audio data
|
| 233 |
+
audio_chunk = waveform[0, 0]
|
| 234 |
+
all_audio_chunks.append(audio_chunk)
|
| 235 |
+
|
| 236 |
+
# Combine all chunks we have so far
|
| 237 |
+
combined_audio = np.concatenate(all_audio_chunks)
|
| 238 |
+
|
| 239 |
+
# Yield the combined audio for streaming playback
|
| 240 |
+
yield (SAMPLE_RATE, combined_audio), f"Decoded chunk {i+1}/{num_chunks} ({end_idx}/{tokens.shape[1]} tokens)"
|
| 241 |
+
|
| 242 |
+
# Small delay to allow Gradio to update UI
|
| 243 |
+
time.sleep(0.1)
|
| 244 |
+
|
| 245 |
+
# Final complete audio
|
| 246 |
+
combined_audio = np.concatenate(all_audio_chunks)
|
| 247 |
+
yield (SAMPLE_RATE, combined_audio), f"Completed decoding all {tokens.shape[1]} tokens"
|
| 248 |
+
|
| 249 |
+
except Exception as e:
|
| 250 |
+
print(f"Streaming decode error: {str(e)}")
|
| 251 |
+
yield None, f"Error decoding tokens: {str(e)}"
|
| 252 |
+
|
| 253 |
# Create Gradio interface
|
| 254 |
with gr.Blocks(title="Oterin Audio Codec") as demo:
|
| 255 |
gr.Markdown("# Oterin Audio Codec")
|
|
|
|
| 271 |
decode_btn = gr.Button("Decode")
|
| 272 |
decode_btn.click(decode_tokens, inputs=decode_input, outputs=[decode_output, decode_status])
|
| 273 |
|
| 274 |
+
with gr.Tab("Stream Decode (Listen while decoding)"):
|
| 275 |
+
with gr.Row():
|
| 276 |
+
stream_decode_input = gr.File(label="Token File (.oterin)", file_types=[".oterin"])
|
| 277 |
+
stream_decode_output = gr.Audio(label="Streaming Audio Output")
|
| 278 |
+
stream_decode_status = gr.Textbox(label="Status")
|
| 279 |
+
stream_decode_btn = gr.Button("Start Streaming Decode")
|
| 280 |
+
stream_decode_btn.click(
|
| 281 |
+
stream_decode_tokens,
|
| 282 |
+
inputs=stream_decode_input,
|
| 283 |
+
outputs=[stream_decode_output, stream_decode_status],
|
| 284 |
+
show_progress=True
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
with gr.Tab("Both (Encode & Decode)"):
|
| 288 |
with gr.Row():
|
| 289 |
both_input = gr.Audio(type="filepath", label="Input Audio")
|