Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
import spaces | |
from pydub import AudioSegment | |
from typing import Tuple, Dict, List | |
from demucs.apply import apply_model | |
from demucs.separate import load_track | |
from demucs.pretrained import get_model | |
from demucs.audio import save_audio | |
device: str = "cuda" if torch.cuda.is_available() else "cpu" | |
# Define the inference function | |
def inference(audio_file: str, model_name: str, vocals: bool, drums: bool, bass: bool, other: bool, mp3: bool, mp3_bitrate: int) -> Tuple[str, gr.HTML]: | |
separator = get_model(name=model_name) | |
def stream_log(message): | |
return f"<pre style='margin-bottom: 0;'>[{model_name}] {message}</pre>" | |
yield None, stream_log("Starting separation process...") | |
yield None, stream_log(f"Loading audio file: {audio_file}") | |
wav = load_track(audio_file, separator.samplerate, separator.audio_channels) | |
ref = wav.mean(0) | |
wav = (wav - ref.view(1, -1)).to(device) | |
yield None, stream_log("Audio loaded successfully. Applying model...") | |
sources = apply_model(separator, wav, device=device, progress=True) | |
sources = sources * ref.view(1, -1) + ref.view(1, -1) | |
yield None, stream_log("Model applied. Processing stems...") | |
output_dir: str = os.path.join("separated", model_name, os.path.splitext(os.path.basename(audio_file))[0]) | |
os.makedirs(output_dir, exist_ok=True) | |
stems: Dict[str, str] = {} | |
for stem, source in zip(separator.sources, sources): | |
stem_path: str = os.path.join(output_dir, f"{stem}.wav") | |
save_audio(source, stem_path, separator.samplerate) | |
stems[stem] = stem_path | |
yield None, stream_log(f"Saved {stem} stem") | |
selected_stems: List[str] = [stems[stem] for stem, include in zip(["vocals", "drums", "bass", "other"], [vocals, drums, bass, other]) if include] | |
if not selected_stems: | |
raise gr.Error("Please select at least one stem to mix.") | |
output_file: str = os.path.join(output_dir, "mixed.wav") | |
yield None, stream_log("Mixing selected stems...") | |
if len(selected_stems) == 1: | |
os.rename(selected_stems[0], output_file) | |
else: | |
mixed_audio: AudioSegment = AudioSegment.empty() | |
for stem_path in selected_stems: | |
mixed_audio += AudioSegment.from_wav(stem_path) | |
mixed_audio.export(output_file, format="wav") | |
if mp3: | |
yield None, stream_log(f"Converting to MP3 (bitrate: {mp3_bitrate}k)...") | |
mp3_output_file: str = os.path.splitext(output_file)[0] + ".mp3" | |
mixed_audio.export(mp3_output_file, format="mp3", bitrate=str(mp3_bitrate) + "k") | |
output_file = mp3_output_file | |
yield None, stream_log("Process completed successfully!") | |
yield output_file, gr.HTML("<pre style='color: green;'>Separation and mixing completed successfully!</pre>") | |
# Define the Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown("# Demucs Music Source Separation and Mixing") | |
gr.Markdown("Separate vocals, drums, bass, and other instruments from your music using Demucs and mix the selected stems.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
model_dropdown = gr.Dropdown( | |
["htdemucs", "htdemucs_ft", "htdemucs_6s", "hdemucs_mmi", "mdx", "mdx_extra", "mdx_q", "mdx_extra_q"], | |
label="Model Name", | |
value="htdemucs_ft" | |
) | |
with gr.Row(): | |
vocals_checkbox = gr.Checkbox(label="Vocals", value=True) | |
drums_checkbox = gr.Checkbox(label="Drums", value=True) | |
with gr.Row(): | |
bass_checkbox = gr.Checkbox(label="Bass", value=True) | |
other_checkbox = gr.Checkbox(label="Other", value=True) | |
mp3_checkbox = gr.Checkbox(label="Save as MP3", value=False) | |
mp3_bitrate = gr.Slider(128, 320, step=32, label="MP3 Bitrate", visible=False) | |
submit_btn = gr.Button("Process", variant="primary") | |
with gr.Column(scale=1): | |
output_audio = gr.Audio(type="filepath", label="Processed Audio") | |
separation_log = gr.HTML() | |
submit_btn.click( | |
fn=inference, | |
inputs=[audio_input, model_dropdown, vocals_checkbox, drums_checkbox, bass_checkbox, other_checkbox, mp3_checkbox, mp3_bitrate], | |
outputs=[output_audio, separation_log] | |
) | |
mp3_checkbox.change( | |
fn=lambda mp3: gr.update(visible=mp3), | |
inputs=mp3_checkbox, | |
outputs=mp3_bitrate | |
) | |
# Launch the Gradio interface | |
iface.launch() | |