""" Sample TensorFlow XML-to-TFRecord converter usage: generate_tfrecord.py [-h] [-x XML_DIR] [-l LABELS_PATH] [-o OUTPUT_PATH] [-i IMAGE_DIR] [-c CSV_PATH] optional arguments: -h, --help show this help message and exit -x XML_DIR, --xml_dir XML_DIR Path to the folder where the input .xml files are stored. -l LABELS_PATH, --labels_path LABELS_PATH Path to the labels (.pbtxt) file. -o OUTPUT_PATH, --output_path OUTPUT_PATH Path of output TFRecord (.record) file. -i IMAGE_DIR, --image_dir IMAGE_DIR Path to the folder where the input image files are stored. Defaults to the same directory as XML_DIR. -c CSV_PATH, --csv_path CSV_PATH Path of output .csv file. If none provided, then no file will be written. """ import os import glob import pandas as pd import io import xml.etree.ElementTree as ET import argparse os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1) import tensorflow.compat.v1 as tf from PIL import Image from object_detection.utils import dataset_util, label_map_util from collections import namedtuple # Initiate argument parser parser = argparse.ArgumentParser( description="Sample TensorFlow XML-to-TFRecord converter") parser.add_argument("-x", "--xml_dir", help="Path to the folder where the input .xml files are stored.", type=str) parser.add_argument("-l", "--labels_path", help="Path to the labels (.pbtxt) file.", type=str) parser.add_argument("-o", "--output_path", help="Path of output TFRecord (.record) file.", type=str) parser.add_argument("-i", "--image_dir", help="Path to the folder where the input image files are stored. " "Defaults to the same directory as XML_DIR.", type=str, default=None) parser.add_argument("-c", "--csv_path", help="Path of output .csv file. If none provided, then no file will be " "written.", type=str, default=None) args = parser.parse_args() if args.image_dir is None: args.image_dir = args.xml_dir label_map = label_map_util.load_labelmap(args.labels_path) label_map_dict = label_map_util.get_label_map_dict(label_map) def xml_to_csv(path): """Iterates through all .xml files (generated by labelImg) in a given directory and combines them in a single Pandas dataframe. Parameters: ---------- path : str The path containing the .xml files Returns ------- Pandas DataFrame The produced dataframe """ xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def class_text_to_int(row_label): return label_map_dict[row_label] def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.python_io.TFRecordWriter(args.output_path) path = os.path.join(args.image_dir) examples = xml_to_csv(args.xml_dir) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() print('Successfully created the TFRecord file: {}'.format(args.output_path)) if args.csv_path is not None: examples.to_csv(args.csv_path, index=None) print('Successfully created the CSV file: {}'.format(args.csv_path)) if __name__ == '__main__': tf.app.run()