import torch from diffusers import UniPCMultistepScheduler from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE from diffusers.models import UNetSpatioTemporalConditionModel from transformers import T5EncoderModel, T5Tokenizer from PIL import Image import numpy as np import gradio as gr import spaces model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) @spaces.GPU() def generate(prompt, negative_prompt, width=1280, height=720, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): pipe.to("cuda") output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=1, num_inference_steps=num_inference_steps, guidance_scale=5.0, ) image = output.frames[0][0] image = (image * 255).astype(np.uint8) return Image.fromarray(image) iface = gr.Interface( fn=generate, inputs=[ gr.Textbox(label="Input prompt"), ], additional_inputs = [ gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"), gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024), gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024), gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=50) ], outputs=gr.Image(label="output"), ) iface.launch()