Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import UniPCMultistepScheduler | |
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE | |
from diffusers.models import UNetSpatioTemporalConditionModel | |
from transformers import T5EncoderModel, T5Tokenizer | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) | |
def generate(prompt): | |
pipe.to("cuda") | |
output = pipe( | |
prompt=prompt, | |
# negative_prompt=negative_prompt, | |
height=720, | |
width=1280, | |
num_frames=1, | |
num_inference_steps=28, | |
guidance_scale=5.0, | |
) | |
image = output.frames[0][0] | |
image = (image * 255).astype(np.uint8) | |
return Image.fromarray(image) | |
iface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(label="Input prompt"), | |
# gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024), | |
# gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024), | |
# gr.Textbox(label="Lora ID", placeholder="Optional"), | |
# gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Lora Scale", value=1) | |
], | |
outputs=gr.Image(label="output"), | |
) | |
iface.launch() |