Wan2.1-Image / app.py
ovi054's picture
Update app.py
d60c82f verified
raw
history blame
1.53 kB
import torch
from diffusers import UniPCMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
from diffusers.models import UNetSpatioTemporalConditionModel
from transformers import T5EncoderModel, T5Tokenizer
from PIL import Image
import numpy as np
import gradio as gr
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
@spaces.GPU()
def generate(prompt):
pipe.to("cuda")
output = pipe(
prompt=prompt,
# negative_prompt=negative_prompt,
height=720,
width=1280,
num_frames=1,
num_inference_steps=28,
guidance_scale=5.0,
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
# gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024),
# gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024),
# gr.Textbox(label="Lora ID", placeholder="Optional"),
# gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Lora Scale", value=1)
],
outputs=gr.Image(label="output"),
)
iface.launch()