Wan2.1-Image / app.py
ovi054's picture
Update app.py
28ae721 verified
raw
history blame
1.69 kB
import torch
from diffusers import UniPCMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
from diffusers.models import UNetSpatioTemporalConditionModel
from transformers import T5EncoderModel, T5Tokenizer
from PIL import Image
import numpy as np
import gradio as gr
import spaces
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
@spaces.GPU()
def generate(prompt, negative_prompt, width=1280, height=720, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
pipe.to("cuda")
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=5.0,
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
],
additional_inputs = [
gr.Textbox(label="Negative prompt", value = ""),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=60, step=1, label="Inference Steps", value=28)
],
outputs=gr.Image(label="output"),
)
iface.launch()