Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -61,7 +61,7 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
61 |
good_vae=good_vae, # Assuming good_vae is defined elsewhere
|
62 |
joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name
|
63 |
):
|
64 |
-
yield img, seed
|
65 |
finally:
|
66 |
# Unload LoRA weights if they were loaded
|
67 |
if lora_id:
|
@@ -72,114 +72,6 @@ examples = [
|
|
72 |
"a cat holding a sign that says hello world",
|
73 |
"an anime illustration of a wiener schnitzel",
|
74 |
]
|
75 |
-
|
76 |
-
# css="""
|
77 |
-
# #col-container {
|
78 |
-
# margin: 0 auto;
|
79 |
-
# max-width: 520px;
|
80 |
-
# }
|
81 |
-
# """
|
82 |
-
|
83 |
-
# with gr.Blocks(css=css) as demo:
|
84 |
-
|
85 |
-
# with gr.Column(elem_id="col-container"):
|
86 |
-
# gr.Markdown(f"""# FLUX.1 [dev] LoRA
|
87 |
-
# 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
88 |
-
# [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
89 |
-
# """)
|
90 |
-
|
91 |
-
# with gr.Row():
|
92 |
-
|
93 |
-
# prompt = gr.Text(
|
94 |
-
# label="Prompt",
|
95 |
-
# show_label=False,
|
96 |
-
# max_lines=1,
|
97 |
-
# placeholder="Enter your prompt",
|
98 |
-
# container=False,
|
99 |
-
# )
|
100 |
-
|
101 |
-
# run_button = gr.Button("Run", scale=0)
|
102 |
-
|
103 |
-
# result = gr.Image(label="Result", show_label=False)
|
104 |
-
|
105 |
-
# with gr.Accordion("Advanced Settings", open=False):
|
106 |
-
|
107 |
-
# seed = gr.Slider(
|
108 |
-
# label="Seed",
|
109 |
-
# minimum=0,
|
110 |
-
# maximum=MAX_SEED,
|
111 |
-
# step=1,
|
112 |
-
# value=0,
|
113 |
-
# )
|
114 |
-
|
115 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
116 |
-
|
117 |
-
# with gr.Row():
|
118 |
-
|
119 |
-
# width = gr.Slider(
|
120 |
-
# label="Width",
|
121 |
-
# minimum=256,
|
122 |
-
# maximum=MAX_IMAGE_SIZE,
|
123 |
-
# step=8,
|
124 |
-
# value=1024,
|
125 |
-
# )
|
126 |
-
|
127 |
-
# height = gr.Slider(
|
128 |
-
# label="Height",
|
129 |
-
# minimum=256,
|
130 |
-
# maximum=MAX_IMAGE_SIZE,
|
131 |
-
# step=8,
|
132 |
-
# value=1024,
|
133 |
-
# )
|
134 |
-
|
135 |
-
# with gr.Row():
|
136 |
-
|
137 |
-
# guidance_scale = gr.Slider(
|
138 |
-
# label="Guidance Scale",
|
139 |
-
# minimum=1,
|
140 |
-
# maximum=15,
|
141 |
-
# step=0.1,
|
142 |
-
# value=3.5,
|
143 |
-
# )
|
144 |
-
|
145 |
-
# num_inference_steps = gr.Slider(
|
146 |
-
# label="Number of inference steps",
|
147 |
-
# minimum=1,
|
148 |
-
# maximum=50,
|
149 |
-
# step=1,
|
150 |
-
# value=28,
|
151 |
-
# )
|
152 |
-
|
153 |
-
# with gr.Row():
|
154 |
-
# lora_id = gr.Textbox(
|
155 |
-
# label="LoRA Model ID (HuggingFace path)",
|
156 |
-
# placeholder="username/lora-model",
|
157 |
-
# max_lines=1
|
158 |
-
# )
|
159 |
-
# lora_scale = gr.Slider(
|
160 |
-
# label="LoRA Scale",
|
161 |
-
# minimum=0,
|
162 |
-
# maximum=2,
|
163 |
-
# step=0.01,
|
164 |
-
# value=0.95,
|
165 |
-
# )
|
166 |
-
|
167 |
-
# gr.Examples(
|
168 |
-
# examples = examples,
|
169 |
-
# fn = infer,
|
170 |
-
# inputs = [prompt],
|
171 |
-
# outputs = [result, seed],
|
172 |
-
# cache_examples="lazy"
|
173 |
-
# )
|
174 |
-
|
175 |
-
# gr.on(
|
176 |
-
# triggers=[run_button.click, prompt.submit],
|
177 |
-
# fn = infer,
|
178 |
-
# inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,lora_id,lora_scale],
|
179 |
-
# outputs = [result, seed]
|
180 |
-
# )
|
181 |
-
|
182 |
-
# demo.launch()
|
183 |
|
184 |
css = """
|
185 |
#col-container {
|
@@ -231,8 +123,6 @@ with gr.Blocks(css=css) as app:
|
|
231 |
with gr.Column():
|
232 |
with gr.Row():
|
233 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
234 |
-
with gr.Row():
|
235 |
-
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True)
|
236 |
|
237 |
# gr.Markdown(article_text)
|
238 |
with gr.Column():
|
@@ -244,7 +134,7 @@ with gr.Blocks(css=css) as app:
|
|
244 |
triggers=[text_button.click, text_prompt.submit],
|
245 |
fn = infer,
|
246 |
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale],
|
247 |
-
outputs=[image_output,
|
248 |
)
|
249 |
|
250 |
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
|
|
61 |
good_vae=good_vae, # Assuming good_vae is defined elsewhere
|
62 |
joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name
|
63 |
):
|
64 |
+
yield img, seed
|
65 |
finally:
|
66 |
# Unload LoRA weights if they were loaded
|
67 |
if lora_id:
|
|
|
72 |
"a cat holding a sign that says hello world",
|
73 |
"an anime illustration of a wiener schnitzel",
|
74 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
css = """
|
77 |
#col-container {
|
|
|
123 |
with gr.Column():
|
124 |
with gr.Row():
|
125 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
|
|
|
|
126 |
|
127 |
# gr.Markdown(article_text)
|
128 |
with gr.Column():
|
|
|
134 |
triggers=[text_button.click, text_prompt.submit],
|
135 |
fn = infer,
|
136 |
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale],
|
137 |
+
outputs=[image_output, seed]
|
138 |
)
|
139 |
|
140 |
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|