File size: 6,818 Bytes
e547b24
021dd02
e547b24
021dd02
 
 
 
 
e547b24
1237ef3
021dd02
 
 
 
 
 
 
 
 
 
 
 
e547b24
1237ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
021dd02
 
 
 
 
40d7442
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237ef3
 
 
40d7442
 
 
 
 
 
1237ef3
f92c94f
 
1237ef3
 
 
 
 
 
 
 
 
 
413cbda
e547b24
 
1237ef3
 
0ca80b9
724b53f
1237ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9beed4
1237ef3
 
 
 
 
f92c94f
1237ef3
e547b24
1237ef3
 
 
f761af5
1237ef3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images


dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

article_text = """
<div style="text-align: center;">
    <p>Enjoying the tool? Buy me a coffee and get exclusive prompt guides!</p>
    <p><i>Instantly unlock helpful tips for creating better prompts!</i></p>
    <div style="display: flex; justify-content: center;">
        <a href="https://piczify.lemonsqueezy.com/buy/0f5206fa-68e8-42f6-9ca8-4f80c587c83e">
            <img src="https://www.buymeacoffee.com/assets/img/custom_images/yellow_img.png" 
                 alt="Buy Me a Coffee" 
                 style="height: 40px; width: auto; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); border-radius: 10px;">
        </a>
    </div>
</div>
"""

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    
    # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
    #         prompt=prompt,
    #         guidance_scale=guidance_scale,
    #         num_inference_steps=num_inference_steps,
    #         width=width,
    #         height=height,
    #         generator=generator,
    #         output_type="pil",
    #         good_vae=good_vae,
    #     ):
    #         yield img, seed

    # Handle LoRA loading
    # Load LoRA weights and prepare joint_attention_kwargs
    if lora_id:
        pipe.unload_lora_weights()
        pipe.load_lora_weights(lora_id)
        joint_attention_kwargs = {"scale": lora_scale}
    else:
        joint_attention_kwargs = None
    
    try:
        # Call the custom pipeline function with the correct keyword argument
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,  # Assuming good_vae is defined elsewhere
            joint_attention_kwargs=joint_attention_kwargs,  # Fixed parameter name
        ):
            yield img, seed
    finally:
        # Unload LoRA weights if they were loaded
        if lora_id:
            pipe.unload_lora_weights()



examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
.generate-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""

with gr.Blocks(css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            lora_scale = gr.Slider(
                                label="LoRA Scale",
                                minimum=0,
                                maximum=2,
                                step=0.01,
                                value=0.95,
                            )
                            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
                            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                        with gr.Row():
                            steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
                            cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                        # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

                with gr.Row():
                    # text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
                    text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
            with gr.Column():
                with gr.Row():
                    image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
                with gr.Row():
                    seed_output = gr.Textbox(label="Seed Used", show_copy_button = True)
        
        gr.Markdown(article_text)
        with gr.Column():
            gr.Examples(
                examples = examples,
                inputs = [text_prompt],
            )

        
        # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
        text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])

app.launch(share=True)