Delete app.py
Browse files
app.py
DELETED
|
@@ -1,59 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from transformers import AutoTokenizer,AutoModelForSequenceClassification
|
| 4 |
-
from transformers import set_seed
|
| 5 |
-
from torch.utils.data import Dataset,DataLoader
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
import numpy as np
|
| 9 |
-
import warnings
|
| 10 |
-
warnings.filterwarnings('ignore')
|
| 11 |
-
set_seed(4)
|
| 12 |
-
device = "cpu"
|
| 13 |
-
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 15 |
-
|
| 16 |
-
def AMP(file):
|
| 17 |
-
test_sequences = file
|
| 18 |
-
max_len = 30
|
| 19 |
-
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt')
|
| 20 |
-
|
| 21 |
-
class MyModel(nn.Module):
|
| 22 |
-
def __init__(self):
|
| 23 |
-
super().__init__()
|
| 24 |
-
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320)
|
| 25 |
-
self.bn1 = nn.BatchNorm1d(256)
|
| 26 |
-
self.bn2 = nn.BatchNorm1d(128)
|
| 27 |
-
self.bn3 = nn.BatchNorm1d(64)
|
| 28 |
-
self.relu = nn.ReLU()
|
| 29 |
-
self.fc1 = nn.Linear(320,256)
|
| 30 |
-
self.fc2 = nn.Linear(256,128)
|
| 31 |
-
self.fc3 = nn.Linear(128,64)
|
| 32 |
-
self.output_layer = nn.Linear(64,2)
|
| 33 |
-
self.dropout = nn.Dropout(0)
|
| 34 |
-
def forward(self,x):
|
| 35 |
-
with torch.no_grad():
|
| 36 |
-
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device))
|
| 37 |
-
output_feature = self.dropout(bert_output["logits"])
|
| 38 |
-
output_feature = self.relu(self.bn1(self.fc1(output_feature)))
|
| 39 |
-
output_feature = self.relu(self.bn2(self.fc2(output_feature)))
|
| 40 |
-
output_feature = self.relu(self.bn3(self.fc3(output_feature)))
|
| 41 |
-
output_feature = self.output_layer(output_feature)
|
| 42 |
-
return torch.softmax(output_feature,dim=1)
|
| 43 |
-
|
| 44 |
-
model = MyModel()
|
| 45 |
-
model.load_state_dict(torch.load("Best_model.pth",map_location=torch.device('cpu')))
|
| 46 |
-
model = model.to(device)
|
| 47 |
-
model.eval()
|
| 48 |
-
out_probability = []
|
| 49 |
-
with torch.no_grad():
|
| 50 |
-
predict = model(test_data)
|
| 51 |
-
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist())
|
| 52 |
-
test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
|
| 53 |
-
id2str = {0:"non-AMP", 1:"AMP"}
|
| 54 |
-
return id2str[test_argmax[0]], out_probability[0]
|
| 55 |
-
|
| 56 |
-
iface = gr.Interface(fn=AMP,
|
| 57 |
-
inputs="text",
|
| 58 |
-
outputs= ["text", "text"])
|
| 59 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|